Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Proteins ; 91(4): 439-455, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36404287

RESUMEN

The VPS13 protein family constitutes a novel class of bridge-like lipid transferases. Autosomal recessive inheritance of mutations in VPS13 genes is associated with the development of neurodegenerative diseases in humans. Bioinformatic approaches previously recognized the domain architecture of these proteins. In this study, we model the first ever full-length structures of the four human homologs VPS13A, VPS13B, VPS13C, and VPS13D in association with model membranes, to investigate their lipid transfer ability and potential structural association with membrane leaflets. We analyze the evolutionary conservation and physicochemical properties of these proteins, focusing on conserved C-terminal amphipathic helices that disturb organelle surfaces and that, adjoined, resemble a traditional Venetian gondola. The gondola domains share significant structural homology with lipid droplet surface-binding proteins. We introduce in silico protein-membrane models displaying the mode of association of VPS13A, VPS13B, VPS13C, and VPS13D to donor and target membranes, and present potential models of action for protein-mediated lipid transfer.


Asunto(s)
Lípidos , Proteínas de Transporte Vesicular , Humanos , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Membranas/metabolismo , Mutación , Estructura Secundaria de Proteína , Proteínas/genética
2.
J Neurosci ; 35(29): 10429-39, 2015 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-26203138

RESUMEN

Axonal growth and neuronal rewiring facilitate functional recovery after spinal cord injury. Known interventions that promote neural repair remain limited in their functional efficacy. To understand genetic determinants of mammalian CNS axon regeneration, we completed an unbiased RNAi gene-silencing screen across most phosphatases in the genome. We identified one known and 17 previously unknown phosphatase suppressors of injury-induced CNS axon growth. Silencing Inpp5f (Sac2) leads to robust enhancement of axon regeneration and growth cone reformation. Results from cultured Inpp5f(-/-) neurons confirm lentiviral shRNA results from the screen. Consistent with the nonoverlapping substrate specificity between Inpp5f and PTEN, rapamycin does not block enhanced regeneration in Inpp5f(-/-) neurons, implicating mechanisms independent of the PI3K/AKT/mTOR pathway. Inpp5f(-/-) mice develop normally, but show enhanced anatomical and functional recovery after mid-thoracic dorsal hemisection injury. More serotonergic axons sprout and/or regenerate caudal to the lesion level, and greater numbers of corticospinal tract axons sprout rostral to the lesion. Functionally, Inpp5f-null mice exhibit enhanced recovery of motor functions in both open-field and rotarod tests. This study demonstrates the potential of an unbiased high-throughput functional screen to identify endogenous suppressors of CNS axon growth after injury, and reveals Inpp5f (Sac2) as a novel suppressor of CNS axon repair after spinal cord injury. Significance statement: The extent of axon regeneration is a critical determinant of neurological recovery from injury, and is extremely limited in the adult mammalian CNS. We describe an unbiased gene-silencing screen that uncovered novel molecules suppressing axonal regeneration. Inpp5f (Sac2) gene deletion promoted recovery from spinal cord injury with no side effects. The mechanism of action is distinct from another lipid phosphatase implicated in regeneration, PTEN. This opens new pathways for investigation in spinal cord injury research. Furthermore the screening methodology can be applied on a genome wide scale to discovery the entire set of mammalian genes contributing to axonal regeneration.


Asunto(s)
Axones/patología , Regeneración Nerviosa/genética , Monoéster Fosfórico Hidrolasas/genética , Traumatismos de la Médula Espinal/patología , Animales , Axones/metabolismo , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Inmunohistoquímica , Inositol Polifosfato 5-Fosfatasas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monoéster Fosfórico Hidrolasas/deficiencia , Monoéster Fosfórico Hidrolasas/metabolismo , Recuperación de la Función/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Traumatismos de la Médula Espinal/metabolismo
4.
EMBO J ; 30(23): 4728-38, 2011 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-21926970

RESUMEN

Synapses are specialized adhesion sites between neurons that are connected by protein complexes spanning the synaptic cleft. These trans-synaptic interactions can organize synapse formation, but their macromolecular properties and effects on synaptic morphology remain incompletely understood. Here, we demonstrate that the synaptic cell adhesion molecule SynCAM 1 self-assembles laterally via its extracellular, membrane-proximal immunoglobulin (Ig) domains 2 and 3. This cis oligomerization generates SynCAM oligomers with increased adhesive capacity and instructs the interactions of this molecule across the nascent and mature synaptic cleft. In immature neurons, cis assembly promotes the adhesive clustering of SynCAM 1 at new axo-dendritic contacts. Interfering with the lateral self-assembly of SynCAM 1 in differentiating neurons strongly impairs its synaptogenic activity. At later stages, the lateral oligomerization of SynCAM 1 restricts synaptic size, indicating that this adhesion molecule contributes to the structural organization of synapses. These results support that lateral interactions assemble SynCAM complexes within the synaptic cleft to promote synapse induction and modulate their structure. These findings provide novel insights into synapse development and the adhesive mechanisms of Ig superfamily members.


Asunto(s)
Moléculas de Adhesión Celular , Inmunoglobulinas , Neuritas/metabolismo , Estructura Cuaternaria de Proteína/fisiología , Sinapsis/metabolismo , Animales , Células COS , Adhesión Celular/fisiología , Molécula 1 de Adhesión Celular , Moléculas de Adhesión Celular/química , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular Neuronal/química , Moléculas de Adhesión Celular Neuronal/metabolismo , Diferenciación Celular/fisiología , Células Cultivadas , Chlorocebus aethiops , Técnicas de Cocultivo , Transferencia Resonante de Energía de Fluorescencia , Células HEK293 , Hipocampo/citología , Humanos , Inmunoglobulinas/química , Inmunoglobulinas/metabolismo , Inmunohistoquímica , Ratones
5.
Mol Cell Neurosci ; 61: 226-40, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25066864

RESUMEN

Fronto-temporal lobar degeneration with TDP-43 (FTLD-TDP) is a fatal neurodegeneration. TMEM106B variants are linked to FTLD-TDP risk, and TMEM106B is lysosomal. Here, we focus on neuronal TMEM106B, and demonstrate co-localization and traffic with lysosomal LAMP-1. pH-sensitive reporters demonstrate that the TMEM106B C-terminus is lumenal. The TMEM106B N-terminus interacts with endosomal adaptors and other TMEM106 proteins. TMEM106B knockdown reduces neuronal lysosomal number and diameter by STED microscopy, and overexpression enlarges LAMP-positive structures. Reduction of TMEM106B increases axonally transported lysosomes, while TMEM106B elevation inhibits transport and yields large lysosomes in the soma. TMEM106B overexpression alters lysosomal stress signaling, causing a translocation of the mTOR-sensitive transcription factor, TFEB, to neuronal nuclei. TMEM106B loss-of-function delays TFEB translocation after Torin-1-induced stress. Enlarged TMEM106B-overexpressing lysosomes maintain organelle integrity longer after lysosomal photodamage than do control lysosomes, while small TMEM106B-knockdown lysosomes are more sensitive to illumination. Thus, neuronal TMEM106B plays a central role in regulating lysosomal size, motility and responsiveness to stress, highlighting the possible role of lysosomal biology in FTLD-TDP.


Asunto(s)
Lisosomas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Transporte de Proteínas/genética , Estrés Fisiológico/genética , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Células Cultivadas , Chlorocebus aethiops , Embrión de Mamíferos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Proteínas Luminiscentes/metabolismo , Proteína 1 de la Membrana Asociada a los Lisosomas/metabolismo , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos , Proteínas del Tejido Nervioso/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Transfección , Proteína Fluorescente Roja
6.
Proc Natl Acad Sci U S A ; 107(16): 7568-73, 2010 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-20368431

RESUMEN

Neuronal growth cones are highly motile structures that tip developing neurites and explore their surroundings before axo-dendritic contact and synaptogenesis. However, the membrane proteins organizing these processes remain insufficiently understood. Here we identify that the synaptic cell adhesion molecule 1 (SynCAM 1), an immunoglobulin superfamily member, is already expressed in developing neurons and localizes to their growth cones. Upon interaction of growth cones with target neurites, SynCAM 1 rapidly assembles at these contacts to form stable adhesive clusters. Synaptic markers can also be detected at these sites. Addressing the functions of SynCAM 1 in growth cones preceding contact, we determine that it is required and sufficient to restrict the number of active filopodia. Further, SynCAM 1 negatively regulates the morphological complexity of migrating growth cones. Focal adhesion kinase, a binding partner of SynCAM 1, is implicated in its morphogenetic activities. These results reveal that SynCAM 1 acts in developing neurons to shape migrating growth cones and contributes to the adhesive differentiation of their axo-dendritic contacts.


Asunto(s)
Axones/metabolismo , Moléculas de Adhesión Celular Neuronal/fisiología , Dendritas/metabolismo , Conos de Crecimiento/metabolismo , Inmunoglobulinas/fisiología , Proteínas de la Membrana/fisiología , Proteínas Supresoras de Tumor/fisiología , Animales , Molécula 1 de Adhesión Celular , Moléculas de Adhesión Celular , Moléculas de Adhesión Celular Neuronal/genética , Diferenciación Celular , Movimiento Celular , Concentración de Iones de Hidrógeno , Inmunoglobulinas/genética , Proteínas de la Membrana/genética , Ratones , Microscopía Confocal/métodos , Modelos Biológicos , Neuronas/metabolismo , Unión Proteica , Ratas , Proteínas Supresoras de Tumor/genética
7.
FASEB Bioadv ; 5(4): 149-155, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37020747

RESUMEN

Acidification of the cellular lysosome is an important factor in infection of mammalian cells by SARS-CoV-2. Therefore, raising the pH of the lysosome would theoretically be beneficial in prevention or treatment of SARS-CoV-2 infection. Sodium bicarbonate, carbicarb, and THAM are buffers that can be used clinically to provide base to patients. To examine whether these bases could raise lysosomal pH and therefore be a primary or adjunctive treatment of SARS-CoV-2 infection, we measured lysosomal and intracellular pH of mammalian cells after exposure to each of these bases. Mammalian HEK293 cells expressing RpH-LAMP1-3xFLAG, a ratiometric sensor of lysosomal luminal pH, were first exposed to Hepes which was then switched to sodium bicarbonate, carbicarb, or THAM and lysosomal pH measured. In bicarbonate buffer the mean lysosomal pH was 4.3 ± 0.1 (n = 20); p = NS versus Hepes (n = 20). The mean lysosomal pH in bicarbonate/carbonate was 4.3 ± 0.1 (n = 21) versus Hepes (n = 21), p = NS. In THAM buffer the mean lysosomal pH was 4.7 ± 0.07 (n = 20) versus Hepes (4.6 ± 0.1, n = 20), p = NS. In addition, there was no statistical difference between pHi in bicarbonate, carbicarb or THAM solutions. Using the membrane permeable base NH4Cl (5 mM), lysosomal pH increased significantly to 5.9 ± 0.1 (n = 21) compared to Hepes (4.5 ± 0.07, n = 21); p < 0.0001. Similarly, exposure to 1 mM hydroxychloroquine significantly increased the lysosomal pH to (5.9 ± 0.06, n = 20) versus Hepes (4.3 ± 0.1, n = 20), p < 0.0001. Separately steady-state pHi was measured in HEK293 cells bathed in various buffers. In bicarbonate pHi was 7.29 ± 0.02 (n = 12) versus Hepes (7.45 ± 0.03, [n = 12]), p < 0.001. In cells bathed in carbicarb pHi was 7.27 ± 0.02 (n = 5) versus Hepes (7.43 ± 0.04, [n = 5]), p < 0.01. Cells bathed in THAM had a pHi of 7.25 ± 0.03 (n = 12) versus Hepes (7.44 ± 0.03 [n = 12]), p < 0.001. In addition, there was no statistical difference in pHi in bicarbonate, carbicarb or THAM solutions. The results of these studies indicate that none of the buffers designed to provide base to patients alters lysosomal pH at the concentrations used in this study and therefore would be predicted to be of no value in the treatment of SARS-CoV-2 infection. If the goal is to raise lysosomal pH to decrease the infectivity of SARS-CoV-2, utilizing lysosomal permeable buffers at the appropriate dose that is non-toxic appears to be a useful approach to explore.

8.
Cell Rep Methods ; 2(4): 100199, 2022 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-35497490

RESUMEN

A complete understanding of synaptic-vesicle recycling requires the use of multiple microscopy methods to obtain complementary information. However, many currently available probes are limited to a specific microscopy modality, which necessitates the use of multiple probes and labeling paradigms. Given the complexity of vesicle populations and recycling pathways, having new single-vesicle probes that could be used for multiple microscopy techniques would complement existing sets of tools for studying vesicle function. Here, we present a probe based on the membrane-binding C2 domain of cytosolic phospholipase A2 (cPLA2) that fulfills this need. By conjugating the C2 domain with different detectable tags, we demonstrate that a single, modular probe can allow synaptic vesicles to be imaged at multiple levels of spatial and temporal resolution. Moreover, as a general endocytic marker, the C2 domain may also be used to study membrane recycling in many cell types.


Asunto(s)
Imagen Multimodal , Vesículas Sinápticas , Vesículas Sinápticas/química
9.
Biomedicines ; 10(4)2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35453507

RESUMEN

The NFκB transcription factors are major regulators of innate immune responses, and NFκB signal pathway dysregulation is linked to inflammatory disease. Here, we utilised bone marrow-derived macrophages from the p65-DsRedxp/IκBα-eGFP transgenic strain to study the functional implication of xenogeneic (human) RelA(p65) protein introduced into the mouse genome. Confocal imaging showed that human RelA is expressed in the cells and can translocate to the nucleus following activation of Toll-like receptor 4. RNA sequencing of lipid A-stimulated macrophages, revealed that human RelA impacts on murine gene transcription, affecting both non-NFκB and NFκB target genes, including immediate-early and late response genes, e.g., Fos and Cxcl10. Validation experiments on NFκB targets revealed markedly reduced mRNA levels, but similar kinetic profiles in transgenic cells compared to wild-type. Enrichment pathway analysis of differentially expressed genes revealed interferon and cytokine signaling were affected. These immune response pathways were also affected in macrophages treated with tumor necrosis factor. Data suggests that the presence of xenogeneic RelA protein likely has inhibitory activity, altering specific transcriptional profiles of key molecules involved in immune responses. It is therefore essential that this information be taken into consideration when designing and interpreting future experiments using this transgenic strain.

10.
Autophagy ; 17(6): 1500-1518, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32515674

RESUMEN

Disorders of lysosomal physiology have increasingly been found to underlie the pathology of a rapidly growing cast of neurodevelopmental disorders and sporadic diseases of aging. One cardinal aspect of lysosomal (dys)function is lysosomal acidification in which defects trigger lysosomal stress signaling and defects in proteolytic capacity. We have developed a genetically encoded ratiometric probe to measure lysosomal pH coupled with a purification tag to efficiently purify lysosomes for both proteomic and in vitro evaluation of their function. Using our probe, we showed that lysosomal pH is remarkably stable over a period of days in a variety of cell types. Additionally, this probe can be used to determine that lysosomal stress signaling via TFEB is uncoupled from gross changes in lysosomal pH. Finally, we demonstrated that while overexpression of ARL8B GTPase causes striking alkalinization of peripheral lysosomes in HEK293 T cells, peripheral lysosomes per se are no less acidic than juxtanuclear lysosomes in our cell lines.Abbreviations: ARL8B: ADP ribosylation factor like GTPase 8B; ATP: adenosine triphosphate; ATP5F1B/ATPB: ATP synthase F1 subunit beta; ATP6V1A: ATPase H+ transporting V1 subunit A; Baf: bafilomycin A1; BLOC-1: biogenesis of lysosome-related organelles complex 1; BSA: bovine serum albumin; Cos7: African green monkey kidney fibroblast-like cell line; CQ: chloroquine; CTSB: cathepsin B; CYCS: cytochrome c, somatic; DAPI: 4',6-diamidino -2- phenylindole; DIC: differential interference contrast; DIV: days in vitro; DMEM: Dulbecco's modified Eagle's medium; E8: embryonic day 8; EEA1: early endosome antigen 1; EGTA: ethylene glycol-bis(ß-aminoethyl ether)-N,N,N',N'-tetraacetic acid; ER: endoplasmic reticulum; FBS: fetal bovine serum; FITC: fluorescein isothiocyanate; GABARAPL2: GABA type A receptor associated protein like 2; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GOLGA2/GM130: golgin A2; GTP: guanosine triphosphate; HEK293T: human embryonic kidney 293 cells, that expresses a mutant version of the SV40 large T antigen; HeLa: Henrietta Lacks-derived cell; HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; HRP: horseradish peroxidase; IGF2R/ciM6PR: insulin like growth factor 2 receptor; LAMP1/2: lysosomal associated membrane protein 1/2; LMAN2/VIP36: lectin, mannose binding 2; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MTORC1: mechanistic target of rapamycin kinase complex 1; PCR: polymerase chain reaction; PDL: poly-d-lysine; PGK1p: promotor from human phosphoglycerate kinase 1; PIKFYVE: phosphoinositide kinase, FYVE-type zinc finger containing; PPT1/CLN1: palmitoyl-protein thioesterase 1; RPS6KB1/p70: ribosomal protein S6 kinase B1; STAT3: signal transducer and activator of transcription 3; TAX1BP1: Tax1 binding protein 1; TFEB: transcription factor EB; TGN: trans-Golgi network; TGOLN2/TGN46: trans-Golgi network protein 2; TIRF: total internal reflection fluorescence; TMEM106B: transmembrane protein 106B; TOR: target of rapamycin; TRPM2: transient receptor potential cation channel subfamily M member 2; V-ATPase: vacuolar-type proton-translocating ATPase; VPS35: VPS35 retromer complex component.


Asunto(s)
Autofagosomas/metabolismo , Autofagia/fisiología , Técnicas Biosensibles , Concentración de Iones de Hidrógeno , Lisosomas/metabolismo , Neuronas/metabolismo , Animales , Células COS , Chlorocebus aethiops , Células HEK293 , Haplorrinos , Homeostasis/fisiología , Humanos , Proteómica/métodos , Transducción de Señal/fisiología
11.
Curr Opin Neurobiol ; 18(3): 261-9, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18725297

RESUMEN

Multiple signaling pathways initiate and specify the formation of synapses in the central nervous system. General principles that organize nascent synapses have emerged from the studies in multiple model organisms. These include the synapse-organizing roles of dedicated synaptic adhesion molecules, synaptic signaling following receptor-ligand interactions, and the regulation of synapse formation by secreted molecules. Intracellularly, a range of effectors subsequently regulates signaling steps and cytoskeletal changes. Together, a blueprint of synapse formation is emerging into which these distinct signaling steps will need to be integrated temporally and spatially.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Transducción de Señal/fisiología , Sinapsis/fisiología , Animales , Humanos , Transmisión Sináptica/fisiología
12.
Mol Biol Cell ; 30(17): 2268-2282, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31216233

RESUMEN

Mutations of the inositol 5-phosphatase OCRL cause Lowe syndrome (LS), characterized by congenital cataract, low IQ, and defective kidney proximal tubule resorption. A key subset of LS mutants abolishes OCRL's interactions with endocytic adaptors containing F&H peptide motifs. Converging unbiased methods examining human peptides and the unicellular phagocytic organism Dictyostelium discoideum reveal that, like OCRL, the Dictyostelium OCRL orthologue Dd5P4 binds two proteins closely related to the F&H proteins APPL1 and Ses1/2 (also referred to as IPIP27A/B). In addition, a novel conserved F&H interactor was identified, GxcU (in Dictyostelium) and the Cdc42-GEF FGD1-related F-actin binding protein (Frabin) (in human cells). Examining these proteins in D. discoideum, we find that, like OCRL, Dd5P4 acts at well-conserved and physically distinct endocytic stations. Dd5P4 functions in coordination with F&H proteins to control membrane deformation at multiple stages of endocytosis and suppresses GxcU-mediated activity during fluid-phase micropinocytosis. We also reveal that OCRL/Dd5P4 acts at the contractile vacuole, an exocytic osmoregulatory organelle. We propose F&H peptide-containing proteins may be key modifiers of LS phenotypes.


Asunto(s)
Dictyostelium/metabolismo , Síndrome Oculocerebrorrenal/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Secuencia de Aminoácidos , Animales , Endocitosis/genética , Endocitosis/fisiología , Endosomas/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Inositol Polifosfato 5-Fosfatasas/metabolismo , Cinética , Membranas/metabolismo , Mutación , Síndrome Oculocerebrorrenal/genética , Monoéster Fosfórico Hidrolasas/fisiología , Pinocitosis , Unión Proteica , Vacuolas/metabolismo
13.
Autophagy ; 15(9): 1572-1591, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30917721

RESUMEN

Mitochondria are key organelles for cellular metabolism, and regulate several processes including cell death and macroautophagy/autophagy. Here, we show that mitochondrial respiratory chain (RC) deficiency deactivates AMP-activated protein kinase (AMPK, a key regulator of energy homeostasis) signaling in tissue and in cultured cells. The deactivation of AMPK in RC-deficiency is due to increased expression of the AMPK-inhibiting protein FLCN (folliculin). AMPK is found to be necessary for basal lysosomal function, and AMPK deactivation in RC-deficiency inhibits lysosomal function by decreasing the activity of the lysosomal Ca2+ channel MCOLN1 (mucolipin 1). MCOLN1 is regulated by phosphoinositide kinase PIKFYVE and its product PtdIns(3,5)P2, which is also decreased in RC-deficiency. Notably, reactivation of AMPK, in a PIKFYVE-dependent manner, or of MCOLN1 in RC-deficient cells, restores lysosomal hydrolytic capacity. Building on these data and the literature, we propose that downregulation of the AMPK-PIKFYVE-PtdIns(3,5)P2-MCOLN1 pathway causes lysosomal Ca2+ accumulation and impaired lysosomal catabolism. Besides unveiling a novel role of AMPK in lysosomal function, this study points to the mechanism that links mitochondrial malfunction to impaired lysosomal catabolism, underscoring the importance of AMPK and the complexity of organelle cross-talk in the regulation of cellular homeostasis. Abbreviation: ΔΨm: mitochondrial transmembrane potential; AMP: adenosine monophosphate; AMPK: AMP-activated protein kinase; ATG5: autophagy related 5; ATP: adenosine triphosphate; ATP6V0A1: ATPase, H+ transporting, lysosomal, V0 subbunit A1; ATP6V1A: ATPase, H+ transporting, lysosomal, V0 subbunit A; BSA: bovine serum albumin; CCCP: carbonyl cyanide-m-chlorophenylhydrazone; CREB1: cAMP response element binding protein 1; CTSD: cathepsin D; CTSF: cathepsin F; DMEM: Dulbecco's modified Eagle's medium; DMSO: dimethyl sulfoxide; EBSS: Earl's balanced salt solution; ER: endoplasmic reticulum; FBS: fetal bovine serum; FCCP: carbonyl cyanide-p-trifluoromethoxyphenolhydrazone; GFP: green fluorescent protein; GPN: glycyl-L-phenylalanine 2-naphthylamide; LAMP1: lysosomal associated membrane protein 1; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MCOLN1/TRPML1: mucolipin 1; MEF: mouse embryonic fibroblast; MITF: melanocyte inducing transcription factor; ML1N*2-GFP: probe used to detect PtdIns(3,5)P2 based on the transmembrane domain of MCOLN1; MTORC1: mechanistic target of rapamycin kinase complex 1; NDUFS4: NADH:ubiquinone oxidoreductase subunit S4; OCR: oxygen consumption rate; PBS: phosphate-buffered saline; pcDNA: plasmid cytomegalovirus promoter DNA; PCR: polymerase chain reaction; PtdIns3P: phosphatidylinositol-3-phosphate; PtdIns(3,5)P2: phosphatidylinositol-3,5-bisphosphate; PIKFYVE: phosphoinositide kinase, FYVE-type zinc finger containing; P/S: penicillin-streptomycin; PVDF: polyvinylidene fluoride; qPCR: quantitative real time polymerase chain reaction; RFP: red fluorescent protein; RNA: ribonucleic acid; SDS-PAGE: sodium dodecyl sulfate polyacrylamide gel electrophoresis; shRNA: short hairpin RNA; siRNA: small interfering RNA; TFEB: transcription factor EB; TFE3: transcription factor binding to IGHM enhancer 3; TMRM: tetramethylrhodamine, methyl ester, perchlorate; ULK1: unc-51 like autophagy activating kinase 1; ULK2: unc-51 like autophagy activating kinase 2; UQCRC1: ubiquinol-cytochrome c reductase core protein 1; v-ATPase: vacuolar-type H+-translocating ATPase; WT: wild-type.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Autofagosomas/metabolismo , Lisosomas/metabolismo , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Proteínas Quinasas Activadas por AMP/genética , Animales , Autofagosomas/efectos de los fármacos , Autofagosomas/ultraestructura , Calcio/metabolismo , Muerte Celular/efectos de los fármacos , Muerte Celular/genética , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Fibroblastos , Células HEK293 , Células HeLa , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/enzimología , Lisosomas/ultraestructura , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Canales de Potencial de Receptor Transitorio/antagonistas & inhibidores , Canales de Potencial de Receptor Transitorio/genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
14.
Cell Rep ; 26(1): 145-158.e8, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30605671

RESUMEN

Cellular prion protein (PrPC) binds the scrapie conformation of PrP (PrPSc) and oligomeric ß-amyloid peptide (Aßo) to mediate transmissible spongiform encephalopathy (TSE) and Alzheimer's disease (AD), respectively. We conducted cellular and biochemical screens for compounds blocking PrPC interaction with Aßo. A polymeric degradant of an antibiotic targets Aßo binding sites on PrPC with low nanomolar affinity and prevents Aßo-induced pathophysiology. We then identified a range of negatively charged polymers with specific PrPC affinity in the low to sub-nanomolar range, from both biological (melanin) and synthetic (poly [4-styrenesulfonic acid-co-maleic acid], PSCMA) origin. Association of PSCMA with PrPC prevents Aßo/PrPC-hydrogel formation, blocks Aßo binding to neurons, and abrogates PrPSc production by ScN2a cells. We show that oral PSCMA yields effective brain concentrations and rescues APPswe/PS1ΔE9 transgenic mice from AD-related synapse loss and memory deficits. Thus, an orally active PrPC-directed polymeric agent provides a potential therapeutic approach to address neurodegeneration in AD and TSE.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Proteínas Priónicas/antagonistas & inhibidores , Animales , Ratones , Ratones Transgénicos , Transducción de Señal
15.
J Neurosci ; 27(46): 12516-30, 2007 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-18003830

RESUMEN

Synapses are asymmetric cell junctions with precisely juxtaposed presynaptic and postsynaptic sides. Transsynaptic adhesion complexes are thought to organize developing synapses. The molecular composition of these complexes, however, remains incompletely understood, precluding us from understanding how adhesion across the synaptic cleft guides synapse development. Here, we define two immunoglobulin superfamily members, SynCAM 1 and 2, that are expressed in neurons in the developing brain and localize to excitatory and inhibitory synapses. They function as cell adhesion molecules and assemble with each other across the synaptic cleft into a specific, transsynaptic SynCAM 1/2 complex. Additionally, SynCAM 1 and 2 promote functional synapses as they increase the number of active presynaptic terminals and enhance excitatory neurotransmission. The interaction of SynCAM 1 and 2 is affected by glycosylation, indicating regulation of this adhesion complex by posttranslational modification. The SynCAM 1/2 complex is representative for the highly defined adhesive patterns of this protein family, the four members of which are expressed in neurons in divergent expression profiles. SynCAMs 1, 2, and 3 each can bind themselves, yet preferentially assemble into specific, heterophilic complexes as shown for the synaptic SynCAM 1/2 interaction and a second complex comprising SynCAM 3 and 4. Our results define SynCAM proteins as components of novel heterophilic transsynaptic adhesion complexes that set up asymmetric interactions, with SynCAM proteins contributing to synapse organization and function.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Hipocampo/embriología , Hipocampo/metabolismo , Vías Nerviosas/embriología , Vías Nerviosas/metabolismo , Sinapsis/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Adhesión Celular/fisiología , Moléculas de Adhesión Celular , Diferenciación Celular/fisiología , Línea Celular , Células Cultivadas , Técnicas de Cocultivo , Hipocampo/ultraestructura , Humanos , Inmunoglobulinas , Sustancias Macromoleculares/metabolismo , Ratones , Vías Nerviosas/ultraestructura , Terminales Presinápticos/metabolismo , Terminales Presinápticos/ultraestructura , Isoformas de Proteínas/metabolismo , Ratas , Ratas Sprague-Dawley , Membranas Sinápticas/metabolismo , Membranas Sinápticas/ultraestructura , Transmisión Sináptica/fisiología
16.
PLoS Med ; 4(4): e124, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17425404

RESUMEN

BACKGROUND: In multiple sclerosis, inflammation can successfully be prevented, while promoting repair is still a major challenge. Microglial cells, the resident phagocytes of the central nervous system (CNS), are hematopoietic-derived myeloid cells and express the triggering receptor expressed on myeloid cells 2 (TREM2), an innate immune receptor. Myeloid cells are an accessible source for ex vivo gene therapy. We investigated whether myeloid precursor cells genetically modified to express TREM2 affect the disease course of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. METHODS AND FINDINGS: EAE was induced in mice by immunization with a myelin autoantigen. Intravenous application of TREM2-transduced bone marrow-derived myeloid precursor cells at the EAE peak led to an amelioration of clinical symptoms, reduction in axonal damage, and prevention of further demyelination. TREM2-transduced myeloid cells applied intravenously migrated into the inflammatory spinal cord lesions of EAE-diseased mice, showed increased lysosomal and phagocytic activity, cleared degenerated myelin, and created an anti-inflammatory cytokine milieu within the CNS. CONCLUSIONS: Intravenously applied bone marrow-derived and TREM2-tranduced myeloid precursor cells limit tissue destruction and facilitate repair within the murine CNS by clearance of cellular debris during EAE. TREM2 is a new attractive target for promotion of repair and resolution of inflammation in multiple sclerosis and other neuroinflammatory diseases.


Asunto(s)
Citocinas/biosíntesis , Encefalomielitis Autoinmune Experimental/terapia , Terapia Genética , Trasplante de Células Madre Hematopoyéticas , Glicoproteínas de Membrana/fisiología , Microglía/fisiología , Células Mieloides/trasplante , Fagocitosis , Receptores Inmunológicos/fisiología , Animales , Apoptosis , Diferenciación Celular/efectos de los fármacos , Linaje de la Célula , Movimiento Celular , Células Cultivadas/fisiología , Células Cultivadas/trasplante , Citocinas/genética , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/patología , Encefalomielitis Autoinmune Experimental/cirugía , Femenino , Citometría de Flujo , Regulación de la Expresión Génica , Genes Reporteros , Genes Sintéticos , Vectores Genéticos/genética , Vectores Genéticos/uso terapéutico , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Humanos , Interleucina-10/biosíntesis , Interleucina-10/genética , Lentivirus/genética , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Monocitos/fisiología , Esclerosis Múltiple , Células Mieloides/efectos de los fármacos , Células Mieloides/fisiología , Neuronas/patología , Óxido Nítrico Sintasa de Tipo II/biosíntesis , Óxido Nítrico Sintasa de Tipo II/genética , Regiones Promotoras Genéticas , Receptores Inmunológicos/genética , Transducción Genética
17.
FASEB J ; 20(14): 2573-5, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17068110

RESUMEN

Axonal transport of mitochondria and synaptic vesicle precursors via kinesin motor proteins is essential to keep integrity of axons and synapses. Disturbance of axonal transport is an early sign of neuroinflammatory and neurodegenerative diseases. Treatment of cultured neurons by the inflammatory cytokine tumor necrosis factor-alpha (TNF) stimulated phosphorylation of c-Jun N-terminal kinase (JNK) in neurites. TNF treatment induced dissociation of the heavy chain kinesin family-5B (KIF5B) protein from tubulin in axons but not cell bodies as determined by lifetime-based Förster resonance energy transfer (FRET) analysis. Dissociation of KIF5B from tubulin after TNF treatment was dependent on JNK activity. Furthermore, TNF inhibited axonal transport of mitochondria and synaptophysin by reducing the mobile fraction via JNK. Thus, TNF produced by activated glial cells in inflammatory or degenerative neurological diseases acts on neurites by acting on the kinesin-tubulin complex and inhibits axonal mitochondria and synaptophysin transport via JNK.


Asunto(s)
Inflamación/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Cinesinas/metabolismo , Neuronas/metabolismo , Tubulina (Proteína)/metabolismo , Animales , Células Cultivadas , Hipocampo/citología , Ratones , Mitocondrias/metabolismo , Neuronas/citología , Transducción de Señal , Sinaptofisina/metabolismo , Factor de Necrosis Tumoral alfa
18.
Methods Mol Biol ; 1538: 13-27, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27943180

RESUMEN

The mechanism underlying the differentiation of pre- and postsynaptic specifications involves the sequential and dynamic recruitment of specific molecules coordinated by bidirectional signaling across the synaptic cleft. In this chapter, we describe the co-culture assay, a useful method to evaluate cell-surface molecules through its ability to promote the recruitment of proteins required for synapse structure and function. The versatility of this simple and reliable method is illustrated by the wide variety of applications ranging from analysis of synaptogenic activity to evaluation of soluble compounds with therapeutic potential. In addition, we provide a framework to enable the co-culture assay as a tool for high-throughput studies, thereby improving the efficiency and sensitivity of this classic method in neuroscience.


Asunto(s)
Técnicas de Cocultivo , Sinapsis/fisiología , Transmisión Sináptica , Animales , Biomarcadores , Moléculas de Adhesión Celular/metabolismo , Línea Celular , Descubrimiento de Drogas/métodos , Expresión Génica , Genes Reporteros , Ensayos Analíticos de Alto Rendimiento , Hipocampo/citología , Hipocampo/fisiología , Humanos , Inmunohistoquímica , Microscopía Confocal/métodos , Neuronas/citología , Neuronas/fisiología , Bibliotecas de Moléculas Pequeñas , Sinapsis/efectos de los fármacos
19.
Neuron ; 95(2): 281-296.e6, 2017 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-28728022

RESUMEN

Progranulin (GRN) and TMEM106B are associated with several common neurodegenerative disorders including frontotemporal lobar degeneration (FTLD). A TMEM106B variant modifies GRN-associated FTLD risk. However, their functional relationship in vivo and the mechanisms underlying the risk modification remain unclear. Here, using transcriptomic and proteomic analyses with Grn-/- and Tmem106b-/- mice, we show that, while multiple lysosomal enzymes are increased in Grn-/- brain at both transcriptional and protein levels, TMEM106B deficiency causes reduction in several lysosomal enzymes. Remarkably, Tmem106b deletion from Grn-/- mice normalizes lysosomal protein levels and rescues FTLD-related behavioral abnormalities and retinal degeneration without improving lipofuscin, C1q, and microglial accumulation. Mechanistically, TMEM106B binds vacuolar-ATPase accessory protein 1 (AP1). TMEM106B deficiency reduces vacuolar-ATPase AP1 and V0 subunits, impairing lysosomal acidification and normalizing lysosomal protein levels in Grn-/- neurons. Thus, Grn and Tmem106b genes have opposite effects on lysosomal enzyme levels, and their interaction determines the extent of neurodegeneration.


Asunto(s)
Demencia Frontotemporal/genética , Péptidos y Proteínas de Señalización Intercelular/deficiencia , Mutación/genética , Animales , Encéfalo/metabolismo , Células Cultivadas , Granulinas , Lisosomas/genética , Lisosomas/metabolismo , Ratones Noqueados , Neuronas/metabolismo , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Progranulinas , Proteómica
20.
J Neurosci ; 25(2): 352-62, 2005 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-15647478

RESUMEN

The mechanism of axonal injury in inflammatory brain diseases is still unclear. Increased microglial production of nitric oxide (NO) is a common early sign in neuroinflammatory diseases. We found by fluorescence correlation spectroscopy that synaptophysin tagged with enhanced green fluorescence protein (synaptophysin-EGFP) moves anterogradely in axons of cultured neurons. Activated microglia focally inhibited the axonal movement of synaptophysin-EGFP in a NO synthase-dependent manner. Direct application of a NO donor to neurons resulted in inhibition of axonal transport of synaptophysin-EGFP and synaptotagmin I tagged with EGFP, mediated via phosphorylation of c-jun NH2-terminal kinase (JNK). Thus, overt production of reactive NO by activated microglia blocks the axonal transport of synaptic vesicle precursors via phosphorylation of JNK and could cause axonal and synaptic dysfunction.


Asunto(s)
Transporte Axonal/fisiología , Microglía/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Óxido Nítrico/fisiología , Vesículas Sinápticas/metabolismo , Animales , Proteínas de Unión al Calcio/metabolismo , Células Cultivadas , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/citología , Hipocampo/metabolismo , Inflamación/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Recombinantes de Fusión/metabolismo , Sinaptofisina/metabolismo , Sinaptotagmina I , Sinaptotagminas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA