Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Arch Toxicol ; 94(9): 3265-3280, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32700163

RESUMEN

In vitro assessment of genotoxicity as an early warning tool for carcinogenicity mainly relies on recording cytogenetic damages (micronuclei, nucleoplasmic bridges) in tumour-derived mammalian cell lines like V79 or CHO. The forecasting power of the corresponding standardised test is based on epidemiological evidence between micronuclei frequencies and cancer incidence. As an alternative to destructive staining of nuclear structures a fish stem cell line transgenic for a fusion protein of histone 2B (H2B) and enhanced green fluorescent protein (eGFP) was established. The cells are derived from koi carp brain (KCB) and distinguish from mammalian culturable cells by non-tumour-driven self-renewal. This technology enables the analysis of genotoxic- and malign downstream effects in situ in a combined approach. In proof-of concept-experiments, we used known carcinogens (4-Nitroquinoline 1-oxide, colchicine, diethylstilbestrol, ethyl methanesulfonate) and observed a significant increase in micronuclei (MNi) frequencies in a dose-dependent manner. The concentration ranges for MNi induction were comparable to human/mammalian cells (i.e. VH-16, CHL and HepG2). Cannabidiol caused the same specific cytogenetic damage pattern as observed in human cells, in particular nucleoplasmic bridges. Metabolic activation of aflatoxin B1 and cyclophosphamide could be demonstrated by pre-incubation of the test compounds using either conventional rat derived S9 mix as well as an in vitro generated biotechnological alternative product ewoS9R. The presented high throughput live H2B-eGFP imaging technology using non-transformed stem cells opens new perspectives in the field of in vitro toxicology. The technology offers experimental access to investigate the effects of carcinogens on cell cycle control, gene expression pattern and motility in the course of malign transformation. The new technology enables the definition of Adverse Outcome Pathways leading to malign cell transformation and contributes to the replacement of animal testing. Summary: Complementation of genotoxicity testing by addressing initiating events leading to malign transformation is suggested. A vertebrate cell model showing "healthy" stemness is recommended, in contrast to malign transformed cells used in toxicology/oncocology.


Asunto(s)
Rutas de Resultados Adversos , Pruebas de Mutagenicidad , Animales , Animales Modificados Genéticamente , Carcinógenos/toxicidad , Línea Celular , Núcleo Celular , Transformación Celular Neoplásica , Células Cultivadas , Ciclofosfamida , Daño del ADN , Metanosulfonato de Etilo , Proteínas Fluorescentes Verdes , Histonas , Humanos , Mutágenos/toxicidad , Neoplasias , Ratas , Células Madre
2.
Environ Toxicol Chem ; 35(12): 2916-2930, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27153368

RESUMEN

Induction of vitellogenin (VTG) in male and immature fish is a standardized endpoint in endocrine-disruption testing. To establish a nondestructive swab sampling method, VTG induction in the epidermis of Cypriniformes and Perciformes species was investigated. Both VTG and estrogen receptor genes are expressed in epidermal cells. Immunoaffinity and mass fingerprint analyses show induction of identical VTG peptides in liver and epidermis. Induction of VTG by estradiol (E2) and bisphenol A (BPA) in the epidermis was quantified with homolog enzyme-linked immunosorbent assays. Initial values in juveniles and males were below 1 ng VTG/mL extraction buffer. Exposure to E2 led to values between 200 ng/mL and 4600 ng/mL in cyprinids and between 10 ng/mL and 81 ng/mL in perciforms. Exposure to BPA increased VTG amounts to 250 ng/mL in fathead minnows, 1360 ng/mL in goldfish, 100 ng/mL in zebrafish, and 12 ng/mL in bluegills. Serum VTG contents demonstrated a similar dose-response pattern in the epidermis and the blood. These results show that VTG induction may be reliably assessed in the skin mucus of fishes, demonstrating the suitability of this biological sample for investigating estrogenic activity in compliance with Organisation for Economic Co-operation and Development standard protocols. This broadens the perspectives in toxicological screening and environmental monitoring, reducing the number of tested animals and minimizing harmful effects for animals, allowing for follow-up of individual induction profiles. Environ Toxicol Chem 2016;35:2916-2930. © 2016 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.


Asunto(s)
Cyprinidae/metabolismo , Ensayo de Inmunoadsorción Enzimática , Epidermis/metabolismo , Perciformes/metabolismo , Vitelogeninas/análisis , Animales , Compuestos de Bencidrilo/toxicidad , Cyprinidae/crecimiento & desarrollo , Monitoreo del Ambiente , Epidermis/efectos de los fármacos , Estradiol/toxicidad , Femenino , Expresión Génica/efectos de los fármacos , Cinética , Masculino , Microscopía Fluorescente , Oocitos/metabolismo , Perciformes/crecimiento & desarrollo , Fenoles/toxicidad , Receptores de Estrógenos/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Vitelogeninas/sangre , Pez Cebra/metabolismo
3.
Environ Health Perspect ; 112(17): 1725-33, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15579420

RESUMEN

Heightened concern over endocrine-disrupting chemicals is driven by the hypothesis that they could reduce reproductive success and affect wildlife populations, but there is little evidence for this expectation. The pharmaceutical ethynylestradiol (EE2) is a potent endocrine modulator and is present in the aquatic environment at biologically active concentrations. To investigate impacts on reproductive success and mechanisms of disruption, we exposed breeding populations (n = 12) of zebrafish (Danio rerio) over multiple generations to environmentally relevant concentrations of EE2. Life-long exposure to 5 ng/L EE2 in the F1 generation caused a 56% reduction in fecundity and complete population failure with no fertilization. Conversely, the same level of exposure for up to 40 days in mature adults in the parental F0 generation had no impact on reproductive success. Infertility in the F1 generation after life-long exposure to 5 ng/L EE2 was due to disturbed sexual differentiation, with males having no functional testes and either undifferentiated or intersex gonads. These F1 males also showed a reduced vitellogenic response when compared with F0 males, indicating an acclimation to EE2 exposure. Depuration studies found only a partial recovery in reproductive capacity after 5 months. Significantly, even though the F1 males lacked functional testes, they showed male-pattern reproductive behavior, inducing the spawning act and competing with healthy males to disrupt fertilization. Endocrine disruption is therefore likely to affect breeding dynamics and reproductive success in group-spawning fish. Our findings raise major concerns about the population-level impacts for wildlife of long-term exposure to low concentrations of estrogenic endocrine disruptors.


Asunto(s)
Estrógenos/toxicidad , Etinilestradiol/toxicidad , Fertilidad/efectos de los fármacos , Infertilidad Masculina/etiología , Infertilidad Masculina/veterinaria , Testículo/crecimiento & desarrollo , Pez Cebra/fisiología , Animales , Animales Salvajes , Sistema Endocrino/efectos de los fármacos , Femenino , Masculino , Dinámica Poblacional , Testículo/patología , Vitelogénesis/efectos de los fármacos
4.
Environ Sci Pollut Res Int ; 17(2): 505-18, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19373501

RESUMEN

BACKGROUND, AIM, AND SCOPE: Impacts on the reproductive health of wild fish are thought to be suitable early-warning tools indicating contamination of surface waters with endocrine-disrupting compounds. Ecotoxicological assessment of these field observations depends on the availability of reliable biomarkers to enable a discrimination of natural variations of reproductive functions from anthropogenic impacts. MATERIALS AND METHODS: Roach and perch were caught at eight sampling sites by electrofishing twice a year in summer (July-September) and late autumn/winter (November-December) over a 2-year period. The sites are characterized by different degrees of anthropogenic impact and are situated within the greater Upper Rhine catchment. Age growths, parasitization and gonadal histology of more than 3,000 fish were examined. RESULTS: The two dominant fish species in German surface waters perch (Perca fluviatilis L.) and roach (Rutilus rutilus L.) differ considerably regarding their suitability for biomonitoring. Even in pristine habitats, perch show several variants of sex differentiation in terms of (1) the time of first sexual maturation, (2) the course of seasonal gonadal recrudescence, and (3) the occurrence of heterologous germ cells (testes ova). A statistically significant elevated proportion of males were observed in fish obtained from a TBT-contaminated marina and suppression of gonadal ripening was observed in females caught in a sewage-contaminated brook. Both effects appear to be due to chemical contamination. The only "natural" alteration of sex differentiation in roach was related to parasitization with Ligula intestinalis (Eucestoda, Pseudophyllidea). Other deviations from the normal pattern of sex differentiation were (1) suppression of ovarian ripening and (2) asynchronic seasonal gonadal recrudescence. These are strong indicators of an anthropogenically induced impact on reproductive health. Feminization phenomena were not observed at either the individual or the population level. DISCUSSION: Interpretation of field monitoring results concerning reproductive health requires large numbers of samples and detailed knowledge of the natural plasticity of sex differentiation in the species under investigation. A better understanding of the mechanisms underlying the plasticity of sex differentiation in perch is indispensable to enable perch to be used as a bioindicator. CONCLUSIONS: Deviation from the strict and probably endogenous control of sex differentiation in roach is a strong and unequivocal warning signal. RECOMMENDATIONS AND PERSPECTIVES: The subject of fish monitoring should be addressed in the context of a broader spectrum of potential risks. Seasonal and ontogenetic integrity of gonadal development and recrudescence are potent biomarkers, provided the natural process is well documented for the species under investigation.


Asunto(s)
Cyprinidae/crecimiento & desarrollo , Monitoreo del Ambiente/métodos , Percas/crecimiento & desarrollo , Reproducción/efectos de los fármacos , Contaminantes del Agua/toxicidad , Animales , Biomarcadores/metabolismo , Exposición a Riesgos Ambientales/análisis , Femenino , Gametogénesis/efectos de los fármacos , Alemania , Masculino , Ovario/citología , Ovario/efectos de los fármacos , Ovario/crecimiento & desarrollo , Aguas del Alcantarillado/análisis , Diferenciación Sexual/efectos de los fármacos , Razón de Masculinidad , Testículo/citología , Testículo/efectos de los fármacos , Testículo/crecimiento & desarrollo , Compuestos de Trialquiltina/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA