Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Blood ; 139(12): 1892-1902, 2022 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-34890454

RESUMEN

Rebalancing the hemostatic system by targeting endogenous anticoagulant pathways, like the protein C (PC) system, is being tested as a means of improving hemostasis in patients with hemophilia. Recent intravital studies of hemostasis demonstrated that, in some vascular contexts, thrombin activity is sequestered in the extravascular compartment. These findings raise important questions about the context-dependent contribution of activated PC (APC) to the hemostatic response, because PC activation occurs on the surface of endothelial cells. We used a combination of pharmacologic, genetic, imaging, and computational approaches to examine the relationships among thrombin spatial distribution, PC activation, and APC anticoagulant function. We found that inhibition of APC activity, in mice either harboring the factor V Leiden mutation or infused with an APC-blocking antibody, significantly enhanced fibrin formation and platelet activation in a microvascular injury model, consistent with the role of APC as an anticoagulant. In contrast, inhibition of APC activity had no effect on hemostasis after penetrating injury of the mouse jugular vein. Computational studies showed that differences in blood velocity, injury size, and vessel geometry determine the localization of thrombin generation and, consequently, the extent of PC activation. Computational predictions were tested in vivo and showed that when thrombin generation occurred intravascularly, without penetration of the vessel wall, inhibition of APC significantly increased fibrin formation in the jugular vein. Together, these studies show the importance of thrombin spatial distribution in determining PC activation during hemostasis and thrombosis.


Asunto(s)
Hemostáticos , Trombosis , Animales , Anticoagulantes/farmacología , Células Endoteliales/metabolismo , Fibrina/metabolismo , Hemostasis , Humanos , Ratones , Proteína C/farmacología , Trombina/metabolismo , Trombosis/metabolismo
2.
Proc Natl Acad Sci U S A ; 116(6): 2243-2252, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30674670

RESUMEN

Extensive studies have detailed the molecular regulation of individual components of the hemostatic system, including platelets, coagulation factors, and regulatory proteins. Questions remain, however, about how these elements are integrated at the systems level within a rapidly changing physical environment. To answer some of these questions, we developed a puncture injury model in mouse jugular veins that combines high-resolution, multimodal imaging with functional readouts in vivo. The results reveal striking spatial regulation of platelet activation and fibrin formation that could not be inferred from studies performed ex vivo. As in the microcirculation, where previous studies have been performed, gradients of platelet activation are readily apparent, as is an asymmetrical distribution of fibrin deposition and thrombin activity. Both are oriented from the outer to the inner surface of the damaged vessel wall, with a greater extent of platelet activation and fibrin accumulation on the outside than the inside. Further, we show that the importance of P2Y12 signaling in establishing a competent hemostatic plug is related to the size of the injury, thus limiting its contribution to hemostasis to specific physiologic contexts. Taken together, these studies offer insights into the organization of hemostatic plugs, provide a detailed understanding of the adverse bleeding associated with a widely prescribed class of antiplatelet agents, and highlight differences between hemostasis and thrombosis that may suggest alternative therapeutic approaches.


Asunto(s)
Coagulación Sanguínea , Hemostasis , Heridas y Lesiones/sangre , Animales , Plaquetas/metabolismo , Plaquetas/ultraestructura , Modelos Animales de Enfermedad , Fibrina/metabolismo , Masculino , Ratones , Activación Plaquetaria/efectos de los fármacos , Inhibidores de Agregación Plaquetaria/farmacología , Trombosis/metabolismo , Trombosis/patología , Venas/lesiones , Heridas y Lesiones/etiología
3.
Small ; 17(15): e2004889, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33150735

RESUMEN

Hemostasis is an innate protective mechanism that plays a central role in maintaining the homeostasis of the vascular system during vascular injury. Studying this essential physiological process is often challenged by the difficulty of modeling and probing the complex dynamics of hemostatic responses in the native context of human blood vessels. To address this major challenge, this paper describes a microengineering approach for in vitro modeling of hemostasis. This microphysiological model replicates the living endothelium, multilayered microarchitecture, and procoagulant activity of human blood vessels, and is also equipped with a microneedle that is actuated with spatial precision to simulate penetrating vascular injuries. The system recapitulates key features of the hemostatic response to acute vascular injury as observed in vivo, including i) thrombin-driven accumulation of platelets and fibrin, ii) formation of a platelet- and fibrin-rich hemostatic plug that halts blood loss, and iii) matrix deformation driven by platelet contraction for wound closure. Moreover, the potential use of this model for drug testing applications is demonstrated by evaluating the effects of anticoagulants and antiplatelet agents that are in current clinical use. The vascular injury-on-a-chip may serve as an enabling platform for preclinical investigation of hematological disorders and emerging therapeutic approaches against them.


Asunto(s)
Trombosis , Lesiones del Sistema Vascular , Fibrina , Hemostasis , Humanos , Dispositivos Laboratorio en un Chip
4.
Platelets ; 31(4): 423-431, 2020 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-32297542

RESUMEN

A confluence of technological advances in genetic manipulation and molecular-based fluorescence imaging has led to the widespread adoption of laser injury models to study hemostasis and thrombosis in mice. In all animal models of hemostasis and thrombosis, detailing the nature of experimentally induced vascular injury is paramount in enabling appropriate interpretation of experimental results. A careful appraisal of the literature shows that direct laser-induced injury can result in variable degrees of vascular damage. This review will compare and contrast models of laser injury utilized in the field, with an emphasis on the mechanism and extent of injury, the use of laser injury in different vascular beds and the molecular mechanisms regulating the response to injury. All of these topics will be discussed in the context of how distinct applications of laser injury models may be viewed as representing thrombosis and/or hemostasis.


Asunto(s)
Modelos Animales de Enfermedad , Terapia por Láser , Ratones , Lesiones del Sistema Vascular/etiología , Lesiones del Sistema Vascular/patología , Animales , Células Endoteliales/patología , Arteria Femoral/lesiones , Arteria Femoral/patología , Arteria Femoral/efectos de la radiación , Hemostasis/fisiología , Humanos , Microscopía Intravital , Terapia por Láser/métodos , Activación Plaquetaria/fisiología , Vena Safena/lesiones , Vena Safena/patología , Vena Safena/efectos de la radiación , Trombosis/metabolismo , Trombosis/patología , Tromboxano A2/metabolismo , Lesiones del Sistema Vascular/metabolismo
5.
Platelets ; 31(5): 580-588, 2020 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-32423268

RESUMEN

Electron microscopy has been a valuable tool for the study of platelet biology and thrombosis for more than 70 years. Early studies using conventional transmission and scanning electron microscopy (EM) provided a foundation for our initial understanding of platelet structure and how it changes upon platelet activation. EM approaches have since been utilized to study platelets and thrombi in the context of basic, translational and clinical research, and they are instrumental in the diagnosis of multiple platelet function disorders. In this brief review, we provide a sampling of the many contributions EM based studies have made to the field, including both historical highlights and contemporary applications. We will also discuss exciting new imaging modalities based on EM and their utility for the study of platelets, hemostasis and thrombosis into the future.


Asunto(s)
Plaquetas/metabolismo , Hemostasis/fisiología , Microscopía Electrónica/métodos , Trombosis/diagnóstico por imagen , Plaquetas/citología , Humanos
6.
Blood ; 127(12): 1598-605, 2016 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-26738537

RESUMEN

Previous studies have shown that hemostatic thrombi formed in response to penetrating injuries have a core of densely packed, fibrin-associated platelets overlaid by a shell of less-activated, loosely packed platelets. Here we asked, first, how the diverse elements of this structure combine to stem the loss of plasma-borne molecules and, second, whether antiplatelet agents and anticoagulants that perturb thrombus structure affect the re-establishment of a tight vascular seal. The studies combined high-resolution intravital microscopy with a photo-activatable fluorescent albumin marker to simultaneously track thrombus formation and protein transport following injuries to mouse cremaster muscle venules. The results show that protein loss persists after red cell loss has ceased. Blocking platelet deposition with an αIIbß3antagonist delays vessel sealing and increases extravascular protein accumulation, as does either inhibiting adenosine 5'-diphosphate (ADP) P2Y12receptors or reducing integrin-dependent signaling and retraction. In contrast, sealing was unaffected by introducing hirudin to block fibrin accumulation or a Gi2α gain-of-function mutation to expand the thrombus shell. Collectively, these observations describe a novel approach for studying vessel sealing after injury in real time in vivo and show that (1) the core/shell architecture previously observed in arterioles also occurs in venules, (2) plasma leakage persists well beyond red cell escape and mature thrombus formation, (3) the most critical events for limiting plasma extravasation are the stable accumulation of platelets, ADP-dependent signaling, and the emergence of a densely packed core, not the accumulation of fibrin, and (4) drugs that affect platelet accumulation and packing can delay vessel sealing, permitting protein escape to continue.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Hemostasis , Microvasos/lesiones , Microvasos/patología , Trombosis/patología , Adenosina Difosfato/metabolismo , Animales , Proteínas Sanguíneas/análisis , Fibrina/análisis , Fibrina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microvasos/metabolismo , Activación Plaquetaria , Recuento de Plaquetas , Trombosis/sangre , Trombosis/metabolismo
7.
Blood ; 125(10): 1623-32, 2015 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-25477496

RESUMEN

Hermansky-Pudlak syndrome (HPS) is characterized by oculocutaneous albinism, bleeding diathesis, and other variable symptoms. The bleeding diathesis has been attributed to δ storage pool deficiency, reflecting the malformation of platelet dense granules. Here, we analyzed agonist-stimulated secretion from other storage granules in platelets from mouse HPS models that lack adaptor protein (AP)-3 or biogenesis of lysosome-related organelles complex (BLOC)-3 or BLOC-1. We show that α granule secretion elicited by low agonist doses is impaired in all 3 HPS models. High agonist doses or supplemental adenosine 5'-diphosphate (ADP) restored normal α granule secretion, suggesting that the impairment is secondary to absent dense granule content release. Intravital microscopy following laser-induced vascular injury showed that defective hemostatic thrombus formation in HPS mice largely reflected reduced total platelet accumulation and affirmed a reduced area of α granule secretion. Agonist-induced lysosome secretion ex vivo was also impaired in all 3 HPS models but was incompletely rescued by high agonist doses or excess ADP. Our results imply that (1) AP-3, BLOC-1, and BLOC-3 facilitate protein sorting to lysosomes to support ultimate secretion; (2) impaired secretion of α granules in HPS, and to some degree of lysosomes, is secondary to impaired dense granule secretion; and (3) diminished α granule and lysosome secretion might contribute to pathology in HPS.


Asunto(s)
Plaquetas/fisiología , Síndrome de Hermanski-Pudlak/sangre , Complejo 3 de Proteína Adaptadora/deficiencia , Complejo 3 de Proteína Adaptadora/genética , Complejo 3 de Proteína Adaptadora/fisiología , Adenosina Difosfato/farmacología , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/fisiología , Degranulación de la Célula/fisiología , Modelos Animales de Enfermedad , Factores de Intercambio de Guanina Nucleótido , Síndrome de Hermanski-Pudlak/etiología , Síndrome de Hermanski-Pudlak/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular , Lectinas/deficiencia , Lectinas/genética , Lectinas/fisiología , Lisosomas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Selectina-P/sangre , Proteínas SNARE/sangre , Vesículas Secretoras/fisiología , Trombina/farmacología , Trombosis/sangre , Trombosis/etiología , Proteínas de Transporte Vesicular/deficiencia , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/fisiología
8.
Blood ; 124(11): 1808-15, 2014 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-24951424

RESUMEN

Hemostatic thrombi develop a characteristic architecture in which a core of highly activated platelets is covered by a shell of less-activated platelets. Here we have used a systems biology approach to examine the interrelationship of this architecture with transport rates and agonist distribution in the gaps between platelets. Studies were performed in mice using probes for platelet accumulation, packing density, and activation plus recently developed transport and thrombin activity probes. The results show that intrathrombus transport within the core is much slower than within the shell. The region of slowest transport coincides with the region of greatest packing density and thrombin activity, and appears prior to full platelet activation. Deleting the contact-dependent signaling molecule, Sema4D, delays platelet activation, but not the emergence of the low transport region. Collectively, these results suggest a timeline in which initial platelet accumulation and the narrowing gaps between platelets create a region of reduced transport that facilitates local thrombin accumulation and greater platelet activation, whereas faster transport rates within the shell help to limit thrombin accumulation and growth of the core. Thus, from a systems perspective, platelet accumulation produces an altered microenvironment that shapes thrombus architecture, which in turn affects agonist distribution and subsequent thrombus growth.


Asunto(s)
Coagulación Sanguínea , Modelos Cardiovasculares , Activación Plaquetaria , Trombina/metabolismo , Animales , Humanos , Ratones , Transporte de Proteínas
9.
Blood ; 124(11): 1816-23, 2014 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-24951425

RESUMEN

Hemostatic thrombi formed after a penetrating injury have a heterogeneous architecture in which a core of highly activated, densely packed platelets is covered by a shell of less-activated, loosely packed platelets. In the first manuscript in this series, we show that regional differences in intrathrombus protein transport rates emerge early in the hemostatic response and are preserved as the thrombus develops. Here, we use a theoretical approach to investigate this process and its impact on agonist distribution. The results suggest that hindered diffusion, rather than convection, is the dominant mechanism responsible for molecular movement within the thrombus. The analysis also suggests that the thrombus core, as compared with the shell, provides an environment for retaining soluble agonists such as thrombin, affecting the extent of platelet activation by establishing agonist-specific concentration gradients radiating from the site of injury. This analysis accounts for the observed weaker activation and relative instability of platelets in the shell and predicts that a failure to form a tightly packed thrombus core will limit thrombin accumulation, a prediction tested by analysis of data from mice with a defect in clot retraction.


Asunto(s)
Coagulación Sanguínea , Simulación por Computador , Modelos Cardiovasculares , Activación Plaquetaria , Trombina/metabolismo , Animales , Humanos , Ratones , Transporte de Proteínas
10.
Blood ; 124(11): 1824-31, 2014 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-24951426

RESUMEN

Hemostatic thrombi formed after a penetrating injury have a distinctive structure in which a core of highly activated, closely packed platelets is covered by a shell of less-activated, loosely packed platelets. We have shown that differences in intrathrombus molecular transport emerge in parallel with regional differences in platelet packing density and predicted that these differences affect thrombus growth and stability. Here we test that prediction in a mouse vascular injury model. The studies use a novel method for measuring thrombus contraction in vivo and a previously characterized mouse line with a defect in integrin αIIbß3 outside-in signaling that affects clot retraction ex vivo. The results show that the mutant mice have a defect in thrombus consolidation following vascular injury, resulting in an increase in intrathrombus transport rates and, as predicted by computational modeling, a decrease in thrombin activity and platelet activation in the thrombus core. Collectively, these data (1) demonstrate that in addition to the activation state of individual platelets, the physical properties of the accumulated mass of adherent platelets is critical in determining intrathrombus agonist distribution and platelet activation and (2) define a novel role for integrin signaling in the regulation of intrathrombus transport rates and localization of thrombin activity.


Asunto(s)
Coagulación Sanguínea , Modelos Cardiovasculares , Activación Plaquetaria , Trombina/metabolismo , Animales , Humanos , Ratones , Transporte de Proteínas
11.
Blood ; 121(10): 1875-85, 2013 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-23303817

RESUMEN

Achieving hemostasis following vascular injury requires the rapid accumulation of platelets and fibrin. Here we used a combination of confocal intravital imaging, genetically engineered mice, and antiplatelet agents to determine how variations in the extent of platelet activation following vascular injury arise from the integration of different elements of the platelet-signaling network. Two forms of penetrating injury were used to evoke the hemostatic response. Both produced a hierarchically organized structure in which a core of fully activated platelets was overlaid with an unstable shell of less-activated platelets. This structure emerged as hemostasis was achieved and persisted for at least 60 minutes following injury, its organization at least partly reflecting agonist concentration gradients. Thrombin activity and fibrin formation were found primarily in the innermost core. As proposed previously, greater packing density in the core facilitated contact-dependent signaling and limited entry of plasma-borne molecules visualized with fluorophores coupled to dextran and albumin. Blocking contact-dependent signaling or inhibiting thrombin reduced the size of the core, while the shell was heavily influenced by adenosine 5'-diphosphate and regulators of Gi2-mediated signaling. Thus, the hemostatic response is shown to produce a hierarchical structure arising, in part, from distinct elements of the platelet-signaling network.


Asunto(s)
Plaquetas/fisiología , Hemostasis/fisiología , Músculo Esquelético/metabolismo , Transducción de Señal , Trombina/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Animales , Antígenos CD/fisiología , Plaquetas/ultraestructura , Fibrina/metabolismo , Subunidad alfa de la Proteína de Unión al GTP Gi2/metabolismo , Hemostasis/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/lesiones , Activación Plaquetaria/efectos de los fármacos , Inhibidores de Agregación Plaquetaria/farmacología , Antagonistas del Receptor Purinérgico P2Y/farmacología , Receptores Purinérgicos P2Y12/química , Receptores Purinérgicos P2Y12/metabolismo , Semaforinas/fisiología , Trombina/antagonistas & inhibidores
12.
Blood ; 121(14): 2743-52, 2013 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-23372168

RESUMEN

Three isoforms of phosphatidylinositol-4-phosphate 5-kinase (PIP5KIα, PIP5KIß, and PIP5KIγ) can each catalyze the final step in the synthesis of phosphatidylinositol-4,5-bisphosphate (PIP2), which in turn can be either converted to second messengers or bind directly to and thereby regulate proteins such as talin. A widely quoted model speculates that only p90, a longer splice form of platelet-specific PIP5KIγ, but not the shorter p87 PIP5KIγ, regulates the ligand-binding activity of integrins via talin. However, when we used mice genetically engineered to lack only p90 PIP5KIγ, we found that p90 PIP5KIγ is not critical for integrin activation or platelet adhesion on collagen. However, p90 PIP5KIγ-null platelets do have impaired anchoring of their integrins to the underlying cytoskeleton. Platelets lacking both the p90 and p87 PIP5KIγ isoforms had normal integrin activation and actin dynamics, but impaired anchoring of their integrins to the cytoskeleton. Most importantly, they formed weak shear-resistant adhesions ex vivo and unstable vascular occlusions in vivo. Together, our studies demonstrate that, although PIP5KIγ is essential for normal platelet function, individual isoforms of PIP5KIγ fulfill unique roles for the integrin-dependent integrity of the membrane cytoskeleton and for the stabilization of platelet adhesion.


Asunto(s)
Plaquetas/citología , Plaquetas/enzimología , Integrinas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Adhesividad Plaquetaria/fisiología , Trombosis/enzimología , Citoesqueleto de Actina/fisiología , Empalme Alternativo/genética , Animales , Citoesqueleto/fisiología , Exones/genética , Femenino , Regulación del Desarrollo de la Expresión Génica/fisiología , Isomerismo , Megacariocitos/citología , Megacariocitos/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Pinzas Ópticas , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/deficiencia , Embarazo , Talina/metabolismo , Trombosis/genética
14.
Curr Opin Hematol ; 21(5): 410-7, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25023471

RESUMEN

PURPOSE OF REVIEW: Several decades of work by many investigators have elucidated the major signaling pathways responsible for platelet activation. Still to be fully understood is how these pathways are integrated into a single network and how changing conditions within a growing thrombus affect that network. In this review we will consider some of the recent studies that address these issues and describe a model that provides insights into platelet activation as it occurs in vivo. RECENT FINDINGS: Genetic and pharmacologic studies performed in vivo have demonstrated that platelet activation during hemostasis and thrombosis is heterogeneous. Those studies indicate that distinct platelet activation pathways are not merely redundant, but are coordinated in time and space to achieve an optimal response. This coordination is achieved at least in part by the evolving distribution of platelet agonists and changes in solute transport within a hemostatic plug. SUMMARY: Studies examining the coordination of platelet signaling in time and space continue to increase our understanding of hemostasis and thrombosis. In addition to helping to decipher platelet biology, the results have implications for the understanding of new and existing antiplatelet agents and their potential risks.


Asunto(s)
Plaquetas/citología , Lesiones del Sistema Vascular/patología , Animales , Plaquetas/metabolismo , Forma de la Célula , Humanos , Activación Plaquetaria , Transducción de Señal , Lesiones del Sistema Vascular/metabolismo
15.
Blood ; 119(14): 3352-60, 2012 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-22271446

RESUMEN

Mounting evidence suggests that agonist-initiated signaling in platelets is closely regulated to avoid excessive responses to injury. A variety of physiologic agonists induce a cascade of signaling events termed as inside-out signaling that culminate in exposure of high-affinity binding sites on integrin α(IIb)ß(3). Once platelet activation has occurred, integrin α(IIb)ß(3) stabilizes thrombus formation by providing agonist-independent "outside-in" signals mediated in part by contractile signaling. Junctional adhesion molecule A (JAM-A), a member of the cortical thymocyte marker of the Xenopus (CTX) family, was initially identified as a receptor for a platelet stimulatory mAb. Here we show that JAM-A in resting platelets functions as an endogenous inhibitor of platelet function. Genetic ablation of Jam-A in mice enhances thrombotic function of platelets in vivo. The absence of Jam-A results in increase in platelet aggregation ex vivo. This gain of function is not because of enhanced inside-out signaling because granular secretion, Thromboxane A2 (TxA2) generation, as well as fibrinogen receptor activation, are normal in the absence of Jam-A. Interestingly, integrin outside-in signaling such as platelet spreading and clot retraction is augmented in Jam-A-deficient platelets. We conclude that JAM-A normally limits platelet accumulation by inhibiting integrin outside-in signaling thus preventing premature platelet activation.


Asunto(s)
Plaquetas/metabolismo , Moléculas de Adhesión Celular/metabolismo , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Receptores de Superficie Celular/metabolismo , Trombosis/etiología , Animales , Tiempo de Sangría , Moléculas de Adhesión Celular/genética , Retracción del Coagulo/genética , Técnicas de Inactivación de Genes , Estudios de Asociación Genética , Humanos , Integrinas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Adhesividad Plaquetaria/genética , Embolia Pulmonar/genética , Embolia Pulmonar/mortalidad , Embolia Pulmonar/patología , Receptores de Superficie Celular/genética , Transducción de Señal , Trombosis/genética , Trombosis/prevención & control
16.
Blood ; 119(8): 1935-45, 2012 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-22210881

RESUMEN

Platelets are essential for normal hemostasis, but close regulation is required to avoid the destructive effects of either inappropriate platelet activation or excessive responses to injury. Here, we describe a novel complex comprising the scaffold protein, spinophilin (SPL), and the tyrosine phosphatase, SHP-1, and show that it can modulate platelet activation by sequestering RGS10 and RGS18, 2 members of the regulator of G protein signaling family. We also show that SPL/RGS/SHP1 complexes are present in resting platelets where constitutive phosphorylation of SPL(Y398) creates an atypical binding site for SHP-1. Activation of the SHP-1 occurs on agonist-induced phosphorylation of SHP-1(Y536), triggering dephosphorylation and decay of the SPL/RGS/SHP1 complex. Preventing SHP-1 activation blocks decay of the complex and produces a gain of function. Conversely, deleting spinophilin in mice inhibits platelet activation. It also attenuates the rise in platelet cAMP normally caused by endothelial prostacyclin (PGI(2)). Thus, we propose that the role of the SPL/RGS/SHP1 complex in platelets is time and context dependent. Before injury, the complex helps maintain the quiescence of circulating platelets by maximizing the impact of PGI(2). After injury, the complex gradually releases RGS proteins, limiting platelet activation and providing a mechanism for temporal coordination of pro thrombotic and antithrombotic inputs.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Activación Plaquetaria , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Proteínas RGS/metabolismo , Animales , Sitios de Unión/genética , Plaquetas/metabolismo , Western Blotting , Células CHO , Cricetinae , Cricetulus , AMP Cíclico/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microfilamentos/genética , Modelos Biológicos , Mutación , Proteínas del Tejido Nervioso/genética , Fosforilación , Unión Proteica , Proteína Tirosina Fosfatasa no Receptora Tipo 6/genética , Proteínas RGS/genética , Transducción de Señal , Transfección , Tirosina/genética , Tirosina/metabolismo
17.
Sci Rep ; 14(1): 696, 2024 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-38184693

RESUMEN

As a blood clot forms, grows, deforms, and embolizes following a vascular injury, local clot-flow interactions lead to a highly dynamic flow environment. The local flow influences transport of biochemical species relevant for clotting, and determines the forces on the clot that in turn lead to clot deformation and embolization. Despite this central role, quantitative characterization of this dynamic clot-flow interaction and flow environment in the clot neighborhood remains a major challenge. Here, we propose an approach that integrates dynamic intravital imaging with computer geometric modeling and computational flow and transport modeling to develop a unified in silico framework to quantify the dynamic clot-flow interactions. We outline the development of the methodology referred to as Intravital Integrated In Silico Modeling or IVISim, and then demonstrate the method on a sample set of simulations comprising clot formation following laser injury in two mouse cremaster arteriole injury model data: one wild-type mouse case, and one diYF knockout mouse case. Simulation predictions are verified against experimental observations of transport of caged fluorescent Albumin (cAlb) in both models. Through these simulations, we illustrate how the IVISim methodology can provide insights into hemostatic processes, the role of flow and clot-flow interactions, and enable further investigations comparing and contrasting different biological model scenarios and parameter variations.


Asunto(s)
Trombosis , Animales , Ratones , Simulación por Computador , Clotrimazol , Modelos Animales de Enfermedad , Hemodinámica , Ratones Noqueados , Microscopía Intravital
18.
Res Pract Thromb Haemost ; 8(1): 102291, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38222077

RESUMEN

Background: During clotting, thrombin generates fibrin monomers and activates plasma-derived transglutaminase factor (F) XIIIa; collagen and thrombin-activated platelets offer thrombin-independent cellular FXIIIa (cFXIIIa) for clotting. Detecting fibrin on collagen and tissue factor surfaces in whole blood clotting typically uses complex reagents like fluorescent fibrinogen or antifibrin antibody. Objectives: We want to test whether the peptide using the α2- antiplasmin crosslinking mechanism by FXIIIa is a useful tool in both monitoring FXIIIa activity, and visualize and monitor fibrin formation, deposition, and extent of crosslinking within fibrin structures in whole blood clots formed under flow. Methods: We tested a fluorescent peptide derived from α2-antiplasmin sequence (Ac-GNQEQVSPLTLLKWC-fluorescein) to monitor the location of transglutaminase activity and fibrin during whole blood clotting under microfluidic flow (wall shear rate, 100 s-1). Results: The peptide rapidly colocated with accumulating fibrin due to transglutaminase activity, confirmed by Phe-Pro-Arg-chloromethylketone inhibiting fibrin and peptide labeling. The FXIIIa inhibitor T101 had no effect on fibrin generation but ablated the labeling of fibrin by the peptide. Similarly, Gly-Pro-Arg-Pro abated fibrin formation and thus strongly attenuated the peptide signal. At arterial wall shear rate (1000 s-1), less fibrin was formed, and consequently, less peptide labeling of fibrin was detected compared with venous conditions. The addition of tissue plasminogen activator caused a reduction of both fibrin and peptide signals. Also, the peptide strongly colocalized with fibrin (but not platelets) in clots from laser-injured mouse cremaster arterioles. For clotting under flow, FXIIIa activity was most likely plasma-derived since a RhoA inhibitor did not block α2-antiplasmin fragment cross-linking to fibrin. Conclusion: Under flow, the majority of FXIIIa-dependent fibrin labeling with peptide during clotting was distal of thrombin activity. The synthetic peptide provided a strong and sustained labeling of fibrin as it formed under flow.

19.
J Thromb Haemost ; 22(4): 1016-1023, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38142847

RESUMEN

BACKGROUND: Antithrombotic medications carry an inherent risk of bleeding, which may be exacerbated when anticoagulant and antiplatelet therapeutics are combined. Prior studies have shown different effects of antiplatelet vs anticoagulant drugs on the structure and function of hemostatic plugs in vivo. OBJECTIVES: We examined whether dual antithrombotic treatment consisting of combined antiplatelet and anticoagulant therapeutics alters hemostatic plug structure and function differently from treatment with either therapeutic alone. METHODS: Mice were treated with the P2Y12 antagonist clopidogrel and the factor Xa inhibitor rivaroxaban across a range of doses, either alone or in combination. The hemostatic response was assessed using a mouse jugular vein puncture injury model. Platelet accumulation and fibrin deposition were evaluated using quantitative multiphoton fluorescence microscopy, and bleeding times were recorded. RESULTS: Mice treated with clopidogrel alone exhibited a decrease in platelet accumulation at the site of injury, with prolonged bleeding times only at the highest doses of clopidogrel used. Mice treated with rivaroxaban alone instead showed a reduction in fibrin deposition with no impact on bleeding. Mice treated with both clopidogrel and rivaroxaban exhibited platelet and fibrin accumulation that was similar to that with either drug given alone; however, dual antithrombotic therapy resulted in impaired hemostasis at doses that had no impact on bleeding when given in isolation. CONCLUSION: Combined administration of antiplatelet and anticoagulant therapeutics exacerbates bleeding as compared to that with either drug alone, potentially via combined loss of both adenosine 5'-diphosphate- and thrombin-mediated platelet activation. These findings enhance our understanding of the bleeding risk associated with dual antithrombotic therapy.


Asunto(s)
Hemostáticos , Inhibidores de Agregación Plaquetaria , Humanos , Inhibidores de Agregación Plaquetaria/farmacología , Fibrinolíticos/toxicidad , Clopidogrel , Rivaroxabán , Aspirina , Hemostasis , Anticoagulantes , Hemorragia/inducido químicamente , Hemorragia/tratamiento farmacológico , Fibrina
20.
Blood Adv ; 8(6): 1550-1566, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38163324

RESUMEN

ABSTRACT: Mechanisms of proteostasis in anucleate circulating platelets are unknown and may regulate platelet function. We investigated the hypothesis that plasma-borne growth factors/hormones (GFHs) maintain constitutive translation in circulating platelets to facilitate reactivity. Bio-orthogonal noncanonical amino acid tagging (BONCAT) coupled with liquid chromatography-tandem mass spectrometry analysis revealed constitutive translation of a broad-spectrum translatome in human platelets dependent upon plasma or GFH exposure, and in murine circulation. Freshly isolated platelets from plasma showed homeostatic activation of translation-initiation signaling pathways: phosphorylation of p38/ERK upstream kinases, essential intermediate MNK1/2, and effectors eIF4E/4E-BP1. Plasma starvation led to loss of pathway phosphorylation, but it was fully restored with 5-minute stimulation by plasma or GFHs. Cycloheximide or puromycin infusion suppressed ex vivo platelet GpIIb/IIIa activation and P-selectin exposure with low thrombin concentrations and low-to-saturating concentrations of adenosine 5'-diphosphate (ADP) or thromboxane analog but not convulxin. ADP-induced thromboxane generation was blunted by translation inhibition, and secondary-wave aggregation was inhibited in a thromboxane-dependent manner. Intravenously administered puromycin reduced injury-induced clot size in cremaster muscle arterioles, and delayed primary hemostasis after tail tip amputation but did not delay neither final hemostasis after subsequent rebleeds, nor final hemostasis after jugular vein puncture. In contrast, these mice were protected from injury-induced arterial thrombosis and thrombin-induced pulmonary thromboembolism (PE), and adoptive transfer of translation-inhibited platelets into untreated mice inhibited arterial thrombosis and PE. Thus, constitutive plasma GFH-driven translation regulates platelet G protein-coupled receptor reactivity to balance hemostasis and thrombotic potential.


Asunto(s)
Agregación Plaquetaria , Trombosis , Ratones , Humanos , Animales , Trombina/metabolismo , Tromboxanos , Puromicina/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA