Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(11)2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34073041

RESUMEN

Mucopolysaccharidosis IIIA (MPS IIIA, Sanfilippo syndrome type A), a paediatric neurological lysosomal storage disease, is caused by impaired function of the enzyme N-sulfoglucosamine sulfohydrolase (SGSH) resulting in impaired catabolism of heparan sulfate glycosaminoglycan (HS GAG) and its accumulation in tissues. MPS IIIA represents a significant proportion of childhood dementias. This condition generally leads to patient death in the teenage years, yet no effective therapy exists for MPS IIIA and a complete understanding of the mechanisms of MPS IIIA pathogenesis is lacking. Here, we employ targeted CRISPR/Cas9 mutagenesis to generate a model of MPS IIIA in the zebrafish, a model organism with strong genetic tractability and amenity for high-throughput screening. The sgshΔex5-6 zebrafish mutant exhibits a complete absence of Sgsh enzymatic activity, leading to progressive accumulation of HS degradation products with age. sgshΔex5-6 zebrafish faithfully recapitulate diverse CNS-specific features of MPS IIIA, including neuronal lysosomal overabundance, complex behavioural phenotypes, and profound, lifelong neuroinflammation. We further demonstrate that neuroinflammation in sgshΔex5-6 zebrafish is largely dependent on interleukin-1ß and can be attenuated via the pharmacological inhibition of Caspase-1, which partially rescues behavioural abnormalities in sgshΔex5-6 mutant larvae in a context-dependent manner. We expect the sgshΔex5-6 zebrafish mutant to be a valuable resource in gaining a better understanding of MPS IIIA pathobiology towards the development of timely and effective therapeutic interventions.


Asunto(s)
Modelos Animales de Enfermedad , Hidrolasas/genética , Mucopolisacaridosis III , Animales , Humanos , Mucopolisacaridosis III/metabolismo , Mucopolisacaridosis III/patología , Mutación , Fenotipo , Pez Cebra
2.
Methods Mol Biol ; 2746: 47-56, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38070078

RESUMEN

Unlike mammals, adult and larval zebrafish exhibit robust regeneration following traumatic spinal cord injury. This remarkable regenerative capacity, combined with exquisite imaging capabilities and an abundance of powerful genetic techniques, has established the zebrafish as an important vertebrate model for the study of neural regeneration. Here, we describe a protocol for the complete mechanical ablation of the larval zebrafish spinal cord. With practice, this protocol can be used to reproducibly injure upward of 100 samples per hour, facilitating the high-throughput screening of factors involved in spinal cord regeneration and repair.


Asunto(s)
Traumatismos de la Médula Espinal , Regeneración de la Medula Espinal , Animales , Pez Cebra , Larva , Médula Espinal , Regeneración Nerviosa , Mamíferos
3.
Dev Cell ; 56(16): 2364-2380.e8, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-34428400

RESUMEN

Tissue regeneration and functional restoration after injury are considered as stem- and progenitor-cell-driven processes. In the central nervous system, stem cell-driven repair is slow and problematic because function needs to be restored rapidly for vital tasks. In highly regenerative vertebrates, such as zebrafish, functional recovery is rapid, suggesting a capability for fast cell production and functional integration. Surprisingly, we found that migration of dormant "precursor neurons" to the injury site pioneers functional circuit regeneration after spinal cord injury and controls the subsequent stem-cell-driven repair response. Thus, the precursor neurons make do before the stem cells make new. Furthermore, RNA released from the dying or damaged cells at the site of injury acts as a signal to attract precursor neurons for repair. Taken together, our data demonstrate an unanticipated role of neuronal migration and RNA as drivers of neural repair.


Asunto(s)
Movimiento Celular , Regeneración Nerviosa , Células-Madre Neurales/metabolismo , ARN/metabolismo , Animales , Células-Madre Neurales/fisiología , Pez Cebra
4.
Biol Bull ; 234(1): 22-36, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29694798

RESUMEN

Cubozoans have the most intricate visual apparatus within Cnidaria. It comprises four identical sensory structures, the rhopalia, each of which holds six eyes of four morphological types. Two of these eyes are camera-type eyes that are, in many ways, similar to the vertebrate eye. The visual input is used to control complex behaviors, such as navigation and obstacle avoidance, and is processed by an elaborate rhopalial nervous system. Several studies have examined the rhopalial nervous system, which, despite a radial symmetric body plan, is bilaterally symmetrical, connecting the two sides of the rhopalium through commissures in an extensive neuropil. The four rhopalia are interconnected by a nerve ring situated in the oral margin of the bell, and together these structures constitute the cubozoan central nervous system. Cnidarians have excellent regenerative capabilities, enabling most species to regenerate large body areas or body parts, and some species can regenerate completely from just a few hundred cells. Here we test whether cubozoans are capable of regenerating the rhopalia, despite the complexity of the visual system and the rhopalial nervous system. The results show that the rhopalia are readily regrown after amputation and have developed most, if not all, neural elements within two weeks. Using electrophysiology, we investigated the functionality of the regrown rhopalia and found that they generated pacemaker signals and that the lens eyes showed a normal response to light. Our findings substantiate the amazing regenerative ability in Cnidaria by showing here the complex sensory system of Cubozoa, a model system proving to be highly applicable in studies of neurogenesis.


Asunto(s)
Cubomedusas/anatomía & histología , Cubomedusas/fisiología , Regeneración/fisiología , Animales , Fenómenos Fisiológicos del Sistema Nervioso , Células Receptoras Sensoriales/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA