Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 620
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 150(5): 895-908, 2012 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-22939619

RESUMEN

Mutant huntingtin (HTT) protein causes Huntington disease (HD), an incurable neurological disorder. Silencing mutant HTT using nucleic acids would eliminate the root cause of HD. Developing nucleic acid drugs is challenging, and an ideal clinical approach to gene silencing would combine the simplicity of single-stranded antisense oligonucleotides with the efficiency of RNAi. Here, we describe RNAi by single-stranded siRNAs (ss-siRNAs). ss-siRNAs are potent (>100-fold more than unmodified RNA) and allele-selective (>30-fold) inhibitors of mutant HTT expression in cells derived from HD patients. Strategic placement of mismatched bases mimics micro-RNA recognition and optimizes discrimination between mutant and wild-type alleles. ss-siRNAs require Argonaute protein and function through the RNAi pathway. Intraventricular infusion of ss-siRNA produced selective silencing of the mutant HTT allele throughout the brain in a mouse HD model. These data demonstrate that chemically modified ss-siRNAs function through the RNAi pathway and provide allele-selective compounds for clinical development.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedad de Huntington/genética , Enfermedad de Huntington/terapia , Proteínas del Tejido Nervioso/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Animales , Encéfalo/metabolismo , Línea Celular , Humanos , Proteína Huntingtina , Ratones , Oligodesoxirribonucleótidos Antisentido/genética , ARN Interferente Pequeño/genética
2.
Cell ; 150(5): 883-94, 2012 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-22939618

RESUMEN

The therapeutic utility of siRNAs is limited by the requirement for complex formulations to deliver them to tissues. If potent single-stranded RNAs could be identified, they would provide a simpler path to pharmacological agents. Here, we describe single-stranded siRNAs (ss-siRNAs) that silence gene expression in animals absent lipid formulation. Effective ss-siRNAs were identified by iterative design by determining structure-activity relationships correlating chemically modified single strands and Argonaute 2 (AGO2) activities, potency in cells, nuclease stability, and pharmacokinetics. We find that the passenger strand is not necessary for potent gene silencing. The guide-strand activity requires AGO2, demonstrating action through the RNAi pathway. ss-siRNA action requires a 5' phosphate to achieve activity in vivo, and we developed a metabolically stable 5'-(E)-vinylphosphonate (5'-VP) with conformation and sterioelectronic properties similar to the natural phosphate. Identification of potent ss-siRNAs offers an additional option for RNAi therapeutics and an alternate perspective on RNAi mechanism.


Asunto(s)
Proteínas Argonautas/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Animales , Secuencia de Bases , Células Cultivadas , Células HeLa , Hepatocitos/metabolismo , Humanos , Metabolismo de los Lípidos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Organofosfonatos/metabolismo , ARN Interferente Pequeño/química , ARN Interferente Pequeño/genética , Complejo Silenciador Inducido por ARN/metabolismo , Compuestos de Vinilo/metabolismo
3.
Nucleic Acids Res ; 50(13): 7216-7223, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35801855

RESUMEN

For more than three decades, Ionis Pharmaceutics has pursued the challenging mission of creating a new platform for drug discovery. To overcome the numerous challenges faced required the integration of innovation across many scientific areas, despite many disappointments and failures. The approaches implemented to create and maintain a scientific environment to achieve the mission demanded the rigorous practice of science over three decades. The approaches taken are discussed in this perspective.


Asunto(s)
Descubrimiento de Drogas , Industria Farmacéutica , Investigación , Ciencia
4.
Nucleic Acids Res ; 50(14): 8107-8126, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35848907

RESUMEN

Non-CpG PS-ASOs can activate the innate immune system, leading to undesired outcomes. This response can vary-in part-as a function of 2'modifications and sequence. Here we investigated the molecular steps involved in the varied effects of PS-ASOs on the innate immune system. We found that pro-inflammatory PS-ASOs require TLR9 signaling based on the experimental systems used. However, the innate immunity of PS-ASOs does not correlate with their binding affinity with TLR9. Furthermore, the innate immune responses of pro-inflammatory PS-ASOs were reduced by coincubation with non-inflammatory PS-ASOs, suggesting that both pro-inflammatory and non-inflammatory PS-ASOs can interact with TLR9. We show that the kinetics of the PS-ASO innate immune responses can vary, which we speculate may be due to the existence of alternative PS-ASO binding sites on TLR9, leading to full, partial, or no activation of the pathway. In addition, we found that several extracellular proteins, including HMGB1, S100A8 and HRG, enhance the innate immune responses of PS-ASOs. Reduction of the binding affinity by reducing the PS content of PS-ASOs decreased innate immune responses, suggesting that PS-ASO-protein complexes may be sensed by TLR9. These findings thus provide critical information concerning how PS-ASOs can interact with and activate TLR9.


Asunto(s)
Inmunidad Innata , Oligonucleótidos Antisentido , Oligonucleótidos Fosforotioatos , Receptor Toll-Like 9 , Calgranulina A , Endocitosis , Proteína HMGB1 , Humanos , Oligonucleótidos Antisentido/metabolismo , Oligonucleótidos Fosforotioatos/metabolismo , Proteínas , Receptor Toll-Like 9/metabolismo
5.
Nucleic Acids Res ; 49(22): 12970-12985, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34878127

RESUMEN

Phosphorothioate (PS) modified antisense oligonucleotide (ASO) drugs that act on cellular RNAs must enter cells and be released from endocytic organelles to elicit antisense activity. It has been shown that PS-ASOs are mainly released by late endosomes. However, it is unclear how endosome movement in cells contributes to PS-ASO activity. Here, we show that PS-ASOs in early endosomes display Brownian type motion and migrate only short distances, whereas PS-ASOs in late endosomes (LEs) move linearly along microtubules with substantial distances. In cells with normal microtubules and LE movement, PS-ASO-loaded LEs tend to congregate perinuclearly. Disruption of perinuclear positioning of LEs by reduction of dynein 1 decreased PS-ASO activity, without affecting PS-ASO cellular uptake. Similarly, disruption of perinuclear positioning of PS-ASO-LE foci by reduction of ER tethering proteins RNF26, SQSTM1 and UBE2J1, or by overexpression of P50 all decreased PS-ASO activity. However, enhancing perinuclear positioning through reduction of USP15 or over-expression of RNF26 modestly increased PS-ASO activity, indicating that LE perinuclear positioning is required for ensuring efficient PS-ASO release. Together, these observations suggest that LE movement along microtubules and perinuclear positioning affect PS-ASO productive release.


Asunto(s)
Núcleo Celular/metabolismo , Endosomas/metabolismo , Oligonucleótidos Antisentido/metabolismo , Tionucleótidos/metabolismo , Animales , Transporte Biológico , Línea Celular Tumoral , Células Cultivadas , Dineínas/metabolismo , Retículo Endoplásmico/metabolismo , Células HeLa , Humanos , Ratones , Microscopía Confocal , Microtúbulos/metabolismo , Movimiento (Física) , Proteínas de Neoplasias/metabolismo , Oligonucleótidos Antisentido/genética , Tionucleótidos/genética
6.
Nucleic Acids Res ; 49(5): 2721-2739, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33577678

RESUMEN

We recently found that toxic PS-ASOs can cause P54nrb and PSF nucleolar mislocalization in an RNase H1-dependent manner. To better understand the underlying mechanisms of these observations, here we utilize different biochemical approaches to demonstrate that PS-ASO binding can alter the conformations of the bound proteins, as illustrated using recombinant RNase H1, P54nrb, PSF proteins and various isolated domains. While, in general, binding of PS-ASOs or ASO/RNA duplexes stabilizes the conformations of these proteins, PS-ASO binding may also cause the unfolding of RNase H1, including both the hybrid binding domain and the catalytic domain. The extent of conformational change correlates with the binding affinity of PS-ASOs to the proteins. Consequently, PS-ASO binding to RNase H1 induces the interaction of RNase H1 with P54nrb or PSF in a 2'-modification and sequence dependent manner, and toxic PS-ASOs tend to induce more interactions than non-toxic PS-ASOs. PS-ASO binding also enhances the interaction between P54nrb and PSF. However, the interaction between RNase H1 and P32 protein can be disrupted upon binding of PS-ASOs. Together, these results suggest that stronger binding of PS-ASOs can cause greater conformational changes of the bound proteins, subsequently affecting protein-protein interactions. These observations thus provide deeper understanding of the molecular basis of PS-ASO-induced protein mislocalization or degradation observed in cells and advance our understanding of why some PS-ASOs are cytotoxic.


Asunto(s)
Oligonucleótidos Antisentido/metabolismo , Oligonucleótidos Fosforotioatos/metabolismo , Ribonucleasa H/metabolismo , Línea Celular , Quimotripsina , Humanos , Proteínas Nucleares/metabolismo , Oligonucleótidos Antisentido/química , Oligonucleótidos Fosforotioatos/química , Unión Proteica , Conformación Proteica , Señales de Clasificación de Proteína , ARN/metabolismo , Ribonucleasa H/química
7.
Nucleic Acids Res ; 49(14): 8277-8293, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34244781

RESUMEN

Phosphorothioate (PS) modified antisense oligonucleotide (ASO) drugs can trigger RNase H1 cleavage of cellular target RNAs to modulate gene expression. Internalized PS-ASOs must be released from membraned endosomal organelles, a rate limiting step that is not well understood. Recently we found that M6PR transport between Golgi and late endosomes facilitates productive release of PS-ASOs, raising the possibility that Golgi-mediated transport may play important roles in PS-ASO activity. Here we further evaluated the involvement of Golgi in PS-ASO activity by examining additional Golgi proteins. Reduction of certain Golgi proteins, including Golgi-58K, GCC1 and TGN46, decreased PS-ASO activity, without substantial effects on Golgi integrity. Upon PS-ASO cellular uptake, Golgi-58K was recruited to late endosomes where it colocalized with PS-ASOs. Reduction of Golgi-58K caused slower PS-ASO release from late endosomes, decreased GCC2 late endosome relocalization, and led to slower retrograde transport of M6PR from late endosomes to trans-Golgi. Late endosome relocalization of Golgi-58K requires Hsc70, and is most likely mediated by PS-ASO-protein interactions. Together, these results suggest a novel function of Golgi-58K in mediating Golgi-endosome transport and indicate that the Golgi apparatus plays an important role in endosomal release of PS-ASO, ensuring antisense activity.


Asunto(s)
Aparato de Golgi/genética , Proteínas de la Matriz de Golgi/genética , Glicoproteínas de Membrana/genética , Receptor IGF Tipo 2/genética , Transporte Biológico/genética , Endocitosis/genética , Endosomas/genética , Aparato de Golgi/efectos de los fármacos , Células HeLa , Humanos , Oligonucleótidos Antisentido/genética , Oligonucleótidos Fosforotioatos/genética , Ribonucleasa H/genética
8.
Nucleic Acids Res ; 49(4): 1828-1839, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33544849

RESUMEN

We recently showed that site-specific incorporation of 2'-modifications or neutral linkages in the oligo-deoxynucleotide gap region of toxic phosphorothioate (PS) gapmer ASOs can enhance therapeutic index and safety. In this manuscript, we determined if introducing substitution at the 5'-position of deoxynucleotide monomers in the gap can also enhance therapeutic index. Introducing R- or S-configured 5'-Me DNA at positions 3 and 4 in the oligodeoxynucleotide gap enhanced the therapeutic profile of the modified ASOs suggesting a different positional preference as compared to the 2'-OMe gap modification strategy. The generality of these observations was demonstrated by evaluating R-5'-Me and R-5'-Ethyl DNA modifications in multiple ASOs targeting HDAC2, FXI and Dynamin2 mRNA in the liver. The current work adds to a growing body of evidence that small structural changes can modulate the therapeutic properties of PS ASOs and ushers a new era of chemical optimization with a focus on enhancing the therapeutic profile as opposed to nuclease stability, RNA-affinity and pharmacokinetic properties. The 5'-methyl DNA modified ASOs exhibited excellent safety and antisense activity in mice highlighting the therapeutic potential of this class of nucleic acid analogs for next generation ASO designs.


Asunto(s)
ADN/química , Oligonucleótidos Antisentido/química , Animales , Glucosa/análogos & derivados , Glucosa/química , Células HeLa , Humanos , Hígado/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos BALB C , Células 3T3 NIH , Oligonucleótidos Antisentido/uso terapéutico , Oligonucleótidos Antisentido/toxicidad , Compuestos Organofosforados/síntesis química , Ribonucleasa H
9.
Nucleic Acids Res ; 49(16): 9026-9041, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34417625

RESUMEN

The PS modification enhances the nuclease stability and protein binding properties of gapmer antisense oligonucleotides (ASOs) and is one of very few modifications that support RNaseH1 activity. We evaluated the effect of introducing stereorandom and chiral mesyl-phosphoramidate (MsPA) linkages in the DNA gap and flanks of gapmer PS ASOs and characterized the effect of these linkages on RNA-binding, nuclease stability, protein binding, pro-inflammatory profile, antisense activity and toxicity in cells and in mice. We show that all PS linkages in a gapmer ASO can be replaced with MsPA without compromising chemical stability and RNA binding affinity but these designs reduced activity. However, replacing up to 5 PS in the gap with MsPA was well tolerated and replacing specific PS linkages at appropriate locations was able to greatly reduce both immune stimulation and cytotoxicity. The improved nuclease stability of MsPA over PS translated to significant improvement in the duration of ASO action in mice which was comparable to that of enhanced stabilized siRNA designs. Our work highlights the combination of PS and MsPA linkages as a next generation chemical platform for identifying ASO drugs with improved potency and therapeutic index, reduced pro-inflammatory effects and extended duration of effect.


Asunto(s)
Oligonucleótidos Antisentido/síntesis química , Índice Terapéutico de los Medicamentos , Animales , Células HEK293 , Células HeLa , Humanos , Hígado/metabolismo , Masculino , Mesilatos/química , Ratones , Ratones Endogámicos C57BL , Células 3T3 NIH , Oligonucleótidos Antisentido/farmacocinética , Oligonucleótidos Antisentido/toxicidad , Fosforamidas/química , Unión Proteica , Distribución Tisular
10.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37446104

RESUMEN

Physiologic insulin secretion consists of an oscillating pattern of secretion followed by distinct trough periods that stimulate ligand and receptor activation. Apart from the large postprandial bolus release of insulin, ß cells also secrete small amounts of insulin every 4-8 min independent of a meal. Insulin resistance is associated with a disruption in the normal cyclical pattern of insulin secretion. In the case of type-2 diabetes, ß-cell mass is reduced due to apoptosis and ß cells secrete insulin asynchronously. When ligand/receptors are constantly exposed to insulin, a negative feedback loop down regulates insulin receptor availability to insulin, creating a relative hyperinsulinemia. The relative excess of insulin leads to insulin resistance (IR) due to decreased receptor availability. Over time, progressive insulin resistance compromises carbohydrate metabolism, and may progress to type-2 diabetes (T2D). In this review, we discuss insulin resistance pathophysiology and the use of dynamic exogenous insulin administration in a manner consistent with more normal insulin secretion periodicity to reverse insulin resistance. Administration of insulin in such a physiologic manner appears to improve insulin sensitivity, lower HgbA1c, and, in some instances, has been associated with the reversal of end-organ damage that leads to complications of diabetes. This review outlines the rationale for how the physiologic secretion of insulin orchestrates glucose metabolism, and how mimicking this secretion profile may serve to improve glycemic control, reduce cellular inflammation, and potentially improve outcomes in patients with diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Insulina/metabolismo , Ligandos , Diabetes Mellitus Tipo 2/metabolismo , Insulina Regular Humana , Glucemia/metabolismo
11.
J Biol Chem ; 296: 100416, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33600796

RESUMEN

Antisense technology is beginning to deliver on the broad promise of the technology. Ten RNA-targeted drugs including eight single-strand antisense drugs (ASOs) and two double-strand ASOs (siRNAs) have now been approved for commercial use, and the ASOs in phase 2/3 trials are innovative, delivered by multiple routes of administration and focused on both rare and common diseases. In fact, two ASOs are used in cardiovascular outcome studies and several others in very large trials. Interest in the technology continues to grow, and the field has been subject to a significant number of reviews. In this review, we focus on the molecular events that result in the effects observed and use recent clinical results involving several different ASOs to exemplify specific molecular mechanisms and specific issues. We conclude with the prospective on the technology.


Asunto(s)
Oligonucleótidos Antisentido/farmacología , ARN Interferente Pequeño/farmacología , Química Farmacéutica , Ensayos Clínicos como Asunto , Descubrimiento de Drogas , Humanos , Oligonucleótidos Antisentido/uso terapéutico , ARN Interferente Pequeño/uso terapéutico
12.
Nucleic Acids Res ; 48(17): 9840-9858, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32870273

RESUMEN

Antisense oligonucleotide (ASO) drugs that trigger RNase H1 cleavage of target RNAs have been developed to treat various diseases. Basic pharmacological principles suggest that the development of tolerance is a common response to pharmacological interventions. In this manuscript, for the first time we report a molecular mechanism of tolerance that occurs with some ASOs. Two observations stimulated our interest: some RNA targets are difficult to reduce with RNase H1 activating ASOs and some ASOs display a shorter duration of activity than the prolonged target reduction typically observed. We found that certain ASOs targeting the coding region of some mRNAs that initially reduce target mRNAs can surprisingly increase the levels of the corresponding pre-mRNAs. The increase in pre-mRNA is delayed and due to enhanced transcription and likely also slower processing. This process requires that the ASOs bind in the coding region and reduce the target mRNA by RNase H1 while the mRNA resides in the ribosomes. The pre-mRNA increase is dependent on UPF3A and independent of the NMD pathway or the XRN1-CNOT pathway. The response is consistent in multiple cell lines and independent of the methods used to introduce ASOs into cells.


Asunto(s)
Oligonucleótidos Antisentido/genética , ARN Mensajero/genética , Ribonucleasa H/metabolismo , Animales , Emparejamiento Base , Células HEK293 , Células HeLa , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Oligonucleótidos Antisentido/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo
13.
Nucleic Acids Res ; 48(10): 5235-5253, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32356888

RESUMEN

Antisense oligonucleotides (ASOs) interact with target RNAs via hybridization to modulate gene expression through different mechanisms. ASO therapeutics are chemically modified and include phosphorothioate (PS) backbone modifications and different ribose and base modifications to improve pharmacological properties. Modified PS ASOs display better binding affinity to the target RNAs and increased binding to proteins. Moreover, PS ASO protein interactions can affect many aspects of their performance, including distribution and tissue delivery, cellular uptake, intracellular trafficking, potency and toxicity. In this review, we summarize recent progress in understanding PS ASO protein interactions, highlighting the proteins with which PS ASOs interact, the influence of PS ASO protein interactions on ASO performance, and the structure activity relationships of PS ASO modification and protein interactions. A detailed understanding of these interactions can aid in the design of safer and more potent ASO drugs, as illustrated by recent findings that altering ASO chemical modifications dramatically improves therapeutic index.


Asunto(s)
Oligonucleótidos Fosforotioatos/química , Proteínas/química , Membrana Celular/química , Membrana Celular/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Humanos , Espacio Intracelular/química , Espacio Intracelular/metabolismo , Ligandos , Oligonucleótidos Fosforotioatos/metabolismo , Oligonucleótidos Fosforotioatos/farmacología , Oligonucleótidos Fosforotioatos/toxicidad , Unión Proteica , Dominios Proteicos , Proteínas/metabolismo , Proteínas/toxicidad , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Ribonucleasa H/química , Ribonucleasa H/metabolismo , Relación Estructura-Actividad , Factores de Transcripción/química , Factores de Transcripción/metabolismo
14.
Nucleic Acids Res ; 48(3): 1372-1391, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31840180

RESUMEN

Release of phosphorothioate antisense oligonucleotides (PS-ASOs) from late endosomes (LEs) is a rate-limiting step and a poorly defined process for productive intracellular ASO drug delivery. Here, we examined the role of Golgi-endosome transport, specifically M6PR shuttling mediated by GCC2, in PS-ASO trafficking and activity. We found that reduction in cellular levels of GCC2 or M6PR impaired PS-ASO release from endosomes and decreased PS-ASO activity in human cells. GCC2 relocated to LEs upon PS-ASO treatment, and M6PR also co-localized with PS-ASOs in LEs or on LE membranes. These proteins act through the same pathway to influence PS-ASO activity, with GCC2 action preceding that of M6PR. Our data indicate that M6PR binds PS-ASOs and facilitates their vesicular escape. The co-localization of M6PR and of GCC2 with ASOs is influenced by the PS modifications, which have been shown to enhance the affinity of ASOs for proteins, suggesting that localization of these proteins to LEs is mediated by ASO-protein interactions. Reduction of M6PR levels also decreased PS-ASO activity in mouse cells and in livers of mice treated subcutaneously with PS-ASO, indicating a conserved mechanism. Together, these results demonstrate that the transport machinery between LE and Golgi facilitates PS-ASO release.


Asunto(s)
Endosomas/genética , Proteínas de la Matriz de Golgi/genética , Oligonucleótidos Antisentido/genética , Receptor IGF Tipo 2/genética , Animales , Endocitosis/genética , Endosomas/metabolismo , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Proteínas de la Matriz de Golgi/metabolismo , Células HeLa , Humanos , Ratones , Oligonucleótidos Fosforotioatos/genética , Transporte de Proteínas/genética , Receptor IGF Tipo 2/metabolismo
15.
Nucleic Acids Res ; 48(4): 1691-1700, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31980820

RESUMEN

Therapeutic oligonucleotides are often modified using the phosphorothioate (PS) backbone modification which enhances stability from nuclease mediated degradation. However, substituting oxygen in the phosphodiester backbone with sulfur introduce chirality into the backbone such that a full PS 16-mer oligonucleotide is comprised of 215 distinct stereoisomers. As a result, the role of PS chirality on the performance of antisense oligonucleotides (ASOs) has been a subject of debate for over two decades. We carried out a systematic analysis to determine if controlling PS chirality in the DNA gap region can enhance the potency and safety of gapmer ASOs modified with high-affinity constrained Ethyl (cEt) nucleotides in the flanks. As part of this effort, we examined the effect of systematically controlling PS chirality on RNase H1 cleavage patterns, protein mislocalization phenotypes, activity and toxicity in cells and in mice. We found that while controlling PS chirality can dramatically modulate interactions with RNase H1 as evidenced by changes in RNA cleavage patterns, these were insufficient to improve the overall therapeutic profile. We also found that controlling PS chirality of only two PS linkages in the DNA gap was sufficient to modulate RNase H1 cleavage patterns and combining these designs with simple modifications such as 2'-OMe to the DNA gap resulted in dramatic improvements in therapeutic index. However, we were unable to demonstrate improved potency relative to the stereorandom parent ASO or improved safety over the 2'-OMe gap-modified stereorandom parent ASO. Overall, our work shows that while controlling PS chirality can modulate RNase H1 cleavage patterns, ASO sequence and design are the primary drivers which determine the pharmacological and toxicological properties of gapmer ASOs.


Asunto(s)
ADN/genética , Oligonucleótidos Antisentido/genética , Oligonucleótidos Fosforotioatos/genética , Ribonucleasa H/genética , Animales , ADN/química , Ratones , Oligonucleótidos Antisentido/química , Oligonucleótidos Fosforotioatos/química , Unión Proteica/genética , Ribonucleasa H/química
16.
Int J Mol Sci ; 23(3)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35163806

RESUMEN

Prevalence of type 2 diabetes increased from 2.5% of the US population in 1990 to 10.5% in 2018. This creates a major public health problem, due to increases in long-term complications of diabetes, including neuropathy, retinopathy, nephropathy, skin ulcers, amputations, and atherosclerotic cardiovascular disease. In this review, we evaluated the scientific basis that supports the use of physiologic insulin resensitization. Insulin resistance is the primary cause of type 2 diabetes. Insulin resistance leads to increasing insulin secretion, leading to beta-cell exhaustion or burnout. This triggers a cascade leading to islet cell destruction and the long-term complications of type 2 diabetes. Concurrent with insulin resistance, the regular bursts of insulin from the pancreas become irregular. This has been treated by the precise administration of insulin more physiologically. There is consistent evidence that this treatment modality can reverse the diabetes-associated complications of neuropathy, diabetic ulcers, nephropathy, and retinopathy, and that it lowers HbA1c. In conclusion, physiologic insulin resensitization has a persuasive scientific basis, significant treatment potential, and likely cost benefits.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Resistencia a la Insulina , Insulina Regular Humana/uso terapéutico , Diabetes Mellitus Tipo 2/metabolismo , Hemoglobina Glucada/metabolismo , Humanos , Secreción de Insulina/efectos de los fármacos , Insulina Regular Humana/farmacología , Páncreas/efectos de los fármacos , Páncreas/metabolismo
17.
Nucleic Acids Res ; 47(20): 10865-10880, 2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31495875

RESUMEN

The rapid RNase H1-dependent mislocalization of heterodimer proteins P54nrb and PSF to nucleoli is an early event in the pathway that explains the effects of most toxic phosphorothioate ASOs (PS-ASOs). Using a recently developed NanoLuciferace (NLuc)-based structural complementation reporter system which allows us to observe ASO/protein interactions in real time in live cells, we have determined that safe and toxic PS-ASOs associate with these proteins with kinetics and impact on subcellular localization that differ. Toxic PS-ASOs interact in a complex that includes RNase H1, P54nrb and PSF; but RNase H1/P54nrb complexes were observed in only the cells treated with toxic, but not safe PS-ASOs. In addition, experiments performed in vitro suggest that RNA is also a required component of the complex. The protein-protein interaction between P54nrb and RNase H1 requires the spacer region of RNAse H1, while the P54nrb core domains are required for association with RNase H1. In addition, we have determined that PS-ASOs bind P54nrb via RRM1 and RRM2, while they bind RNase H1 primarily via the hybrid binding domain, however catalytic domain interactions also contribute to overall affinity. These ASO-protein interactions are highly influenced by the chemistry of the PS-ASO binding environment, however little correlation between affinity for specific proteins and PS-ASO toxicity was observed.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Oligonucleótidos Antisentido/metabolismo , Oligonucleótidos Fosforotioatos/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribonucleasa H/metabolismo , Dominio Catalítico , Nucléolo Celular/metabolismo , Supervivencia Celular , Proteínas de Unión al ADN/química , Células HEK293 , Células HeLa , Humanos , Cinética , Unión Proteica , Proteínas de Unión al ARN/química , Ribonucleasa H/química
18.
Nucleic Acids Res ; 47(13): 6900-6916, 2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31165876

RESUMEN

Antisense technology can reduce gene expression via the RNase H1 or RISC pathways and can increase gene expression through modulation of splicing or translation. Here, we demonstrate that antisense oligonucleotides (ASOs) can reduce mRNA levels by acting through the no-go decay pathway. Phosphorothioate ASOs fully modified with 2'-O-methoxyethyl decreased mRNA levels when targeted to coding regions of mRNAs in a translation-dependent, RNase H1-independent manner. The ASOs that activated this decay pathway hybridized near the 3' end of the coding regions. Although some ASOs induced nonsense-mediated decay, others reduced mRNA levels through the no-go decay pathway, since depletion of PELO/HBS1L, proteins required for no-go decay pathway activity, decreased the activities of these ASOs. ASO length and chemical modification influenced the efficacy of these reagents. This non-gapmer ASO-induced mRNA reduction was observed for different transcripts and in different cell lines. Thus, our study identifies a new mechanism by which mRNAs can be degraded using ASOs, adding a new antisense approach to modulation of gene expression. It also helps explain why some fully modified ASOs cause RNA target to be reduced despite being unable to serve as substrates for RNase H1.


Asunto(s)
Oligonucleótidos Antisentido/farmacocinética , Oligonucleótidos Fosforotioatos/farmacología , Estabilidad del ARN/genética , ARN Mensajero/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Endonucleasas/metabolismo , Proteínas de Unión al GTP/metabolismo , Calor , Ratones , Proteínas Nucleares/metabolismo , Desnaturalización de Ácido Nucleico , Fosfoproteínas/genética , Biosíntesis de Proteínas , Interferencia de ARN , Empalme del ARN , ARN Interferente Pequeño/farmacología , Proteínas de Unión al ARN/genética , Nucleolina
19.
Nucleic Acids Res ; 47(11): 5465-5479, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31034558

RESUMEN

Phosphorothioate-modified antisense oligonucleotides (PS-ASOs) interact with a host of plasma, cell-surface and intracellular proteins which govern their therapeutic properties. Given the importance of PS backbone for interaction with proteins, we systematically replaced anionic PS-linkages in toxic ASOs with charge-neutral alkylphosphonate linkages. Site-specific incorporation of alkyl phosphonates altered the RNaseH1 cleavage patterns but overall rates of cleavage and activity versus the on-target gene in cells and in mice were only minimally affected. However, replacing even one PS-linkage at position 2 or 3 from the 5'-side of the DNA-gap with alkylphosphonates reduced or eliminated toxicity of several hepatotoxic gapmer ASOs. The reduction in toxicity was accompanied by the absence of nucleolar mislocalization of paraspeckle protein P54nrb, ablation of P21 mRNA elevation and caspase activation in cells, and hepatotoxicity in mice. The generality of these observations was further demonstrated for several ASOs versus multiple gene targets. Our results add to the types of structural modifications that can be used in the gap-region to enhance ASO safety and provide insights into understanding the biochemistry of PS ASO protein interactions.


Asunto(s)
Membrana Celular/metabolismo , Citoplasma/metabolismo , Oligonucleótidos Antisentido/química , Organofosfonatos/química , Oligonucleótidos Fosforotioatos/química , Células 3T3-L1 , Animales , Caspasas/metabolismo , Línea Celular , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Proteínas de Unión al ADN , Células HeLa , Hepatocitos/metabolismo , Humanos , Ratones , Ratones Endogámicos BALB C , Proteínas Asociadas a Matriz Nuclear/genética , Proteínas Asociadas a Matriz Nuclear/metabolismo , Factores de Transcripción de Octámeros/genética , Factores de Transcripción de Octámeros/metabolismo , Oligonucleótidos Antisentido/administración & dosificación , Oligonucleótidos Fosforotioatos/administración & dosificación , Unión Proteica , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ribonucleasa H/genética , Ribonucleasa H/metabolismo , Receptores Depuradores de Clase B/genética , Receptores Depuradores de Clase B/metabolismo
20.
J Am Chem Soc ; 142(35): 14754-14771, 2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32786803

RESUMEN

Recent progress in understanding phosphorothioate antisense oligonucleotide (PS-ASO) interactions with proteins has revealed that proteins play deterministic roles in the absorption, distribution, cellular uptake, subcellular distribution, molecular mechanisms of action, and toxicity of PS-ASOs. Similarly, such interactions can alter the fates of many intracellular proteins. These and other advances have opened new avenues for the medicinal chemistry of PS-ASOs and research on all elements of the molecular pharmacology of these molecules. These advances have recently been reviewed. In this Perspective article, we summarize some of those learnings, the general principles that have emerged, and a few of the exciting new questions that can now be addressed.


Asunto(s)
Oligonucleótidos Fosforotioatos/química , Proteínas/química , Química Farmacéutica , Humanos , Oligonucleótidos Fosforotioatos/metabolismo , Proteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA