Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
EMBO J ; 35(22): 2386-2398, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27707753

RESUMEN

Correct orientation of the mitotic spindle determines the plane of cellular cleavage and is crucial for organ development. In the developing cerebral cortex, spindle orientation defects result in severe neurodevelopmental disorders, but the precise mechanisms that control this important event are not fully understood. Here, we use a combination of high-content screening and mouse genetics to identify the miR-34/449 family as key regulators of mitotic spindle orientation in the developing cerebral cortex. By screening through all cortically expressed miRNAs in HeLa cells, we show that several members of the miR-34/449 family control mitotic duration and spindle rotation. Analysis of miR-34/449 knockout (KO) mouse embryos demonstrates significant spindle misorientation phenotypes in cortical progenitors, resulting in an excess of radial glia cells at the expense of intermediate progenitors and a significant delay in neurogenesis. We identify the junction adhesion molecule-A (JAM-A) as a key target for miR-34/449 in the developing cortex that might be responsible for those defects. Our data indicate that miRNA-dependent regulation of mitotic spindle orientation is crucial for cell fate specification during mammalian neurogenesis.


Asunto(s)
Corteza Cerebral/embriología , MicroARNs/metabolismo , Huso Acromático/metabolismo , Animales , Células HeLa , Humanos , Ratones , Ratones Noqueados
2.
J Cell Biol ; 217(6): 1985-2004, 2018 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-29695489

RESUMEN

Faithful genome transmission in dividing cells requires that the two copies of each chromosome's DNA package into separate but physically linked sister chromatids. The linkage between sister chromatids is mediated by cohesin, yet where sister chromatids are linked and how they resolve during cell cycle progression has remained unclear. In this study, we investigated sister chromatid organization in live human cells using dCas9-mEGFP labeling of endogenous genomic loci. We detected substantial sister locus separation during G2 phase irrespective of the proximity to cohesin enrichment sites. Almost all sister loci separated within a few hours after their respective replication and then rapidly equilibrated their average distances within dynamic chromatin polymers. Our findings explain why the topology of sister chromatid resolution in G2 largely reflects the DNA replication program. Furthermore, these data suggest that cohesin enrichment sites are not persistent cohesive sites in human cells. Rather, cohesion might occur at variable genomic positions within the cell population.


Asunto(s)
Ciclo Celular , Cromátides/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Supervivencia Celular , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Momento de Replicación del ADN , Colorantes Fluorescentes/metabolismo , Sitios Genéticos , Genoma Humano , Humanos , Interfase , Modelos Biológicos , Cohesinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA