Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Neurophysiol ; 131(6): 1299-1310, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691532

RESUMEN

Although recent studies in nonhuman primates have provided evidence that transcranial magnetic stimulation (TMS) activates cells within the reticular formation, it remains unclear whether descending brain stem projections contribute to the generation of TMS-induced motor evoked potentials (MEPs) in skeletal muscles. We compared MEPs in muscles with extensive direct corticomotoneuronal input (first dorsal interosseous) versus a prominent role in postural control (gastrocnemius) to determine whether the amplitudes of early and late MEPs were differentially modulated by cortical suppression. Suprathreshold TMS was applied with and without a preceding suprathreshold TMS pulse at two interstimulus intervals (50 and 80 ms). H reflexes in target muscles were also tested with and without TMS conditioning. Early and late gastrocnemius MEPs were differentially modulated by cortical inhibition, the amplitude of the early MEP being significantly reduced by cortical suppression and the late MEP facilitated. The amplitude of H reflexes in the gastrocnemius was reduced within the cortical silent period. Early MEPs in the first dorsal interosseous were also reduced during the silent period, but late MEPs were unaffected. Independent modulation of early and late MEPs in the gastrocnemius muscle supports the idea that the MEP is generated by multiple descending pathways. Suppression of the early MEP is consistent with transmission along the fast-conducting corticospinal tract, whereas facilitation of the late MEP suggests transmission along a corticofugal, potentially cortico-reticulospinal, pathway. Accordingly, differences in late MEP modulation between the first dorsal interosseous and gastrocnemius reflect an increased role of corticofugal pathways in the control of postural muscles.NEW & NOTEWORTHY Early and late portions of the response to transcranial magnetic stimulation (TMS) in a lower limb postural muscle are modulated independently by cortical suppression, late motor evoked potentials (MEPs) being facilitated during cortical inhibition. These results suggest a cortico-brain stem transmission pathway for late portions of the TMS-induced MEP.


Asunto(s)
Potenciales Evocados Motores , Extremidad Inferior , Músculo Esquelético , Estimulación Magnética Transcraneal , Masculino , Humanos , Músculo Esquelético/fisiología , Potenciales Evocados Motores/fisiología , Adulto , Femenino , Extremidad Inferior/fisiología , Corteza Motora/fisiología , Reflejo H/fisiología , Adulto Joven , Tractos Piramidales/fisiología
2.
J Neurophysiol ; 126(5): 1465-1477, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34587462

RESUMEN

Postural muscle activity precedes voluntary movements of the upper limbs. The traditional view of this activity is that it anticipates perturbations to balance caused by the movement of a limb. However, findings from reach-based paradigms have shown that postural adjustments can initiate center of mass displacement for mobility rather than minimize its displacement for stability. Within this context, altering reaching distance beyond the base of support would place increasing constraints on equilibrium during stance. If the underlying composition of anticipatory postural activity is linked to stability, coordination between muscles (i.e., motor modules) may evolve differently as equilibrium constraints increase. We analyzed the composition of motor modules in functional trunk muscles as participants performed multidirectional reaching movements to targets within and beyond the arm's length. Bilateral trunk and reaching arm muscle activity were recorded. Despite different trunk requirements necessary for successful movement, and the changing biomechanical (i.e., postural) constraints that accompany alterations in reach distance, nonnegative matrix factorization identified functional motor modules derived from preparatory trunk muscle activity that shared common features. Relative similarity in modular weightings (i.e., composition) and spatial activation profiles that reflect movement goals across tasks necessitating differing levels of trunk involvement provides evidence that preparatory postural adjustments are linked to the same task priorities (i.e., movement generation rather than stability).NEW & NOTEWORTHY Reaching within and beyond arm's length places different task constraints upon the required trunk motion necessary for successful movement execution. The identification of constant modular features, including functional muscle weightings and spatial tuning, lend support to the notion that preparatory postural adjustments of the trunk are tied to the same task priorities driving mobility, regardless of the future postural constraints.


Asunto(s)
Fenómenos Biomecánicos/fisiología , Proteínas de Drosophila/fisiología , Actividad Motora/fisiología , Músculo Esquelético/fisiología , Equilibrio Postural/fisiología , Adulto , Femenino , Humanos , Masculino , Adulto Joven
3.
J Neurophysiol ; 124(3): 868-882, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32783597

RESUMEN

Task-level goals such as maintaining standing balance are achieved through coordinated muscle activity. Consistent and individualized groupings of synchronously activated muscles can be estimated from muscle recordings in terms of motor modules or muscle synergies, independent of their temporal activation. The structure of motor modules can change with motor training, neurological disorders, and rehabilitation, but the central and peripheral mechanisms underlying motor module structure remain unclear. To assess the role of peripheral somatosensory input on motor module structure, we evaluated changes in the structure of motor modules for reactive balance recovery following pyridoxine-induced large-fiber peripheral somatosensory neuropathy in previously collected data in four adult cats. Somatosensory fiber loss, quantified by postmortem histology, varied from mild to severe across cats. Reactive balance recovery was assessed using multidirectional translational support-surface perturbations over days to weeks throughout initial impairment and subsequent recovery of balance ability. Motor modules within each cat were quantified by non-negative matrix factorization and compared in structure over time. All cats exhibited changes in the structure of motor modules for reactive balance recovery after somatosensory loss, providing evidence that somatosensory inputs influence motor module structure. The impact of the somatosensory disturbance on the structure of motor modules in well-trained adult cats indicates that somatosensory mechanisms contribute to motor module structure, and therefore may contribute to some of the pathological changes in motor module structure in neurological disorders. These results further suggest that somatosensory nerves could be targeted during rehabilitation to influence pathological motor modules for rehabilitation.NEW & NOTEWORTHY Stable motor modules for reactive balance recovery in well-trained adult cats were disrupted following pyridoxine-induced peripheral somatosensory neuropathy, suggesting somatosensory inputs contribute to motor module structure. Furthermore, the motor module structure continued to change as the animals regained the ability to maintain standing balance, but the modules generally did not recover pre-pyridoxine patterns. These results suggest changes in somatosensory input and subsequent learning may contribute to changes in motor module structure in pathological conditions.


Asunto(s)
Músculo Esquelético/fisiología , Fibras Nerviosas Mielínicas/patología , Neuronas Aferentes/patología , Enfermedades del Sistema Nervioso Periférico/fisiopatología , Equilibrio Postural/fisiología , Recuperación de la Función/fisiología , Trastornos Somatosensoriales/fisiopatología , Animales , Gatos , Modelos Animales de Enfermedad , Electromiografía , Fibras Nerviosas Mielínicas/efectos de los fármacos , Neuronas Aferentes/efectos de los fármacos , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Piridoxina/farmacología , Trastornos Somatosensoriales/inducido químicamente , Complejo Vitamínico B/farmacología
4.
J Neurophysiol ; 120(4): 2066-2082, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30020836

RESUMEN

If a whole body reaching task is produced when standing or adopting challenging postures, it is unclear whether changes in attentional demands or the sensorimotor integration necessary for balance control influence the interaction between visuomotor and postural components of the movement. Is gaze control prioritized by the central nervous system (CNS) to produce coordinated eye movements with the head and whole body regardless of movement context? Considering the coupled nature of visuomotor and whole body postural control during action, this study aimed to understand how changing equilibrium constraints (in the form of different postural configurations) influenced the initiation of eye, head, and arm movements. We quantified the eye-head metrics and segmental kinematics as participants executed either isolated gaze shifts or whole body reaching movements to visual targets. In total, four postural configurations were compared: seated, natural stance, with the feet together (narrow stance), or while balancing on a wooden beam. Contrary to our initial predictions, the lack of distinct changes in eye-head metrics; timing of eye, head, and arm movement initiation; and gaze accuracy, in spite of kinematic differences, suggests that the CNS integrates postural constraints into the control necessary to initiate gaze shifts. This may be achieved by adopting a whole body gaze strategy that allows for the successful completion of both gaze and reaching goals. NEW & NOTEWORTHY Differences in sequence of movement among the eye, head, and arm have been shown across various paradigms during reaching. Here we show that distinct changes in eye characteristics and movement sequence, coupled with stereotyped profiles of head and gaze movement, are not observed when adopting postures requiring changes to balance constraints. This suggests that a whole body gaze strategy is prioritized by the central nervous system with postural control subservient to gaze stability requirements.


Asunto(s)
Brazo/fisiología , Movimientos Oculares , Movimientos de la Cabeza , Postura , Desempeño Psicomotor , Adulto , Femenino , Humanos , Masculino
5.
Exp Brain Res ; 236(1): 315-329, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29181555

RESUMEN

Evidence is mounting that differences in postural instability can be used to predict who will experience strong illusory self-motions (vection) and become sick when exposed to global patterns of optical flow (e.g., Apthorp et al., PLoS One 9(12):e113897, 2014; Stoffregen and Smart, Brain Res Bull 47:437-448, 1998). This study compared the predictive ability of traditional and recurrence quantification analysis (RQA) based measures of postural activity. We initially measured spontaneous fluctuations in the centre of foot pressure (CoP) of our subjects as they stood quietly with their eyes open and closed. They were then repeatedly exposed to two different types of self-motion display. As expected, the oscillating self-motion displays were found to induce stronger vection and greater sickness than the smooth self-motion displays. RQA based measures of spontaneous postural activity proved to be superior predictors of both vection strength and visually induced motion sickness (VIMS). Participants who had displayed lower CoP recurrence rates when standing quietly were more likely to later report stronger vection and VIMS when exposed to both types of optical flow. Vection strength (but not VIMS) was also found to correlate significantly with three other RQA based measures of postural activity (determinism, entropy, and average diagonal line length). We propose that these RQA based measures of spontaneous postural activity could serve as useful diagnostic tools for evaluating who will benefit the most/least from exposure to virtual environments.


Asunto(s)
Ilusiones/fisiología , Percepción de Movimiento/fisiología , Mareo por Movimiento/fisiopatología , Flujo Optico/fisiología , Equilibrio Postural/fisiología , Adulto , Femenino , Humanos , Masculino , Adulto Joven
7.
J Strength Cond Res ; 31(4): 1078-1086, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27398921

RESUMEN

Walsh, JA, Dawber, JP, Lepers, R, Brown, M, and Stapley, PJ. Is moderate intensity cycling sufficient to induce cardiorespiratory and biomechanical modifications of subsequent running? J Strength Cond Res 31(4): 1078-1086, 2017-This study sought to determine whether prior moderate intensity cycling is sufficient to influence the cardiorespiratory and biomechanical responses during subsequent running. Cardiorespiratory and biomechanical variables measured after moderate intensity cycling were compared with control running at the same intensity. Eight highly trained, competitive triathletes completed 2 separate exercise tests; (a) a 10-minute control run (no prior cycling) and, (b) a 30-minute transition run (TR) (preceded by 20-minute of variable cadence cycling, i.e., run versus cycle-run). Respiratory, breathing frequency (fb), heart rate (HR), cost of running (Cr), rate constant, stride length, and stride frequency variables were recorded, normalized, and quantified at the mean response time (MRT), third minute, 10th minute (steady state), and overall for the control run (CR) and TR. Cost of running increased (p ≤ 0.05) at all respective times during the TR. The V[Combining Dot Above]E/V[Combining Dot Above]CO2 and respiratory exchange ratio (RER) were significantly (p < 0.01) elevated at the MRT and 10th minute of the TR. Furthermore, overall mean increases were recorded for Cr, V[Combining Dot Above]E, V[Combining Dot Above]E/V[Combining Dot Above]CO2, RER, fb (p < 0.01), and HR (p ≤ 0.05) during the TR. Rate constant values for oxygen uptake were significantly different between CR and TR (0.48 ± 0.04 vs. 0.89 ± 0.15; p < 0.01). Stride length decreased across all recorded points during the TR (p ≤ 0.05) and stride frequency increased at the MRT and 3 minutes (p < 0.01). The findings suggest that at moderate intensity, prior cycling influences the cardiorespiratory response during subsequent running. Furthermore, prior cycling seems to have a sustained effect on the Cr during subsequent running.


Asunto(s)
Atletas , Rendimiento Atlético/fisiología , Ciclismo/fisiología , Carrera/fisiología , Adulto , Fenómenos Biomecánicos , Prueba de Esfuerzo , Frecuencia Cardíaca/fisiología , Humanos , Masculino , Consumo de Oxígeno/fisiología , Frecuencia Respiratoria/fisiología , Adulto Joven
8.
Exp Brain Res ; 234(4): 1119-32, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26746311

RESUMEN

Muscle activity preceding the onset of voluntary movement has been shown to reduce centre of mass (CoM) displacement and stabilise the body during self-induced 'perturbations'. However, based on recent findings in the lower limb, where preparatory muscle activity creates the dynamics necessary for the initiation of movement, this study sought to investigate whether trunk musculature acted consistently to minimise the displacement of the CoM, or in contrast, contribute to the movement. While standing, nine healthy participants made single-step (point-to-point) reaching movements to 13 visual targets throughout a 180° range (target interval = 15°). Full-body kinematics and electromyographic activity from 'focal' arm and 'postural' trunk muscles were analysed for a preparatory phase of 250-ms preceding movement onset (termed pPA). Akin to lower limb findings, direction-specific patterns of anticipatory trunk muscle activity accompanied the onset of rotational kinematics and CoM acceleration in the direction of the desired target. When arranged in terms of peak activation, we found functionally relevant groupings aligned to either ipsi-, central or contra-lateral reaching directions. Contrary to traditional approaches, which focus on CoM stabilisation, this spatial recruitment was in favour of assisting initiation of movement. Such activity suggests that the central nervous system may rely on synergic patterns of muscle activation within an undistinguishable and shared focal/postural motor command for functional voluntary movements.


Asunto(s)
Músculos Abdominales/fisiología , Músculos de la Espalda/fisiología , Movimiento/fisiología , Postura/fisiología , Desempeño Psicomotor/fisiología , Adulto , Electromiografía/métodos , Femenino , Humanos , Masculino , Adulto Joven
9.
Exp Brain Res ; 234(6): 1599-609, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26838356

RESUMEN

When a single light cue is given in the visual field, our eyes orient towards it with an average latency of 200 ms. If a second cue is presented at or around the time of the response to the first, a secondary eye movement occurs that represents a reorientation to the new target. While studies have shown that eye movement latencies to 'single-step' targets may or may not be lengthened with age, secondary eye movements (during 'double-step' displacements) are significantly delayed with increasing age. The aim of this study was to investigate whether the postural challenge posed simply by standing (as opposed to sitting) results in significantly longer eye movement latencies in older adults compared to the young. Ten young (<35 years) and 10 older healthy adults (>65 years) participated in the study. They were required to fixate upon a central target and move their eyes in response to 2 types of stimuli: (1) a single-step perturbation of target position either 15° to the right or left and (2) a double-step target displacement incorporating an initial target jump to the right or left by 15°, followed after 200 ms, by a shift of target position to the opposite side (e.g. +15° then -15°). All target displacement conditions were executed in sit and stand positions with the participant at the same distance from the targets. Eye movements were recorded using electro-oculography. Older adults did not show significantly longer eye movement latencies than the younger adults for single-step target displacements, and postural configuration (stand compared to sit) had no effect upon latencies for either group. We categorised double-step trials into those during which the second light changed after or before the onset of the eye shift to the first light. For the former category, young participants showed faster secondary eye shifts to the second light in the standing position, while the older adults did not. For the latter category of double-step trial, young participants showed no significant difference between sit and stand secondary eye movement latencies, but older adults were significantly longer standing compared to sitting. The older adults were significantly longer than the younger adults across both postural conditions, regardless of when the second light change occurred during the eye shift to the first light. We suggest that older adults require greater time and perhaps attentional processes to execute eye movements to unexpected changes in target position when faced with the need to maintain standing balance.


Asunto(s)
Envejecimiento/fisiología , Movimientos Oculares/fisiología , Postura/fisiología , Tiempo de Reacción/fisiología , Adolescente , Adulto , Factores de Edad , Anciano , Electrooculografía , Fijación Ocular/fisiología , Humanos , Adulto Joven
10.
Age Ageing ; 45(5): 732-6, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27496929

RESUMEN

BACKGROUND: some centenarians are engaged in regular physical activity and sometimes in sporting events. OBJECTIVE: we aimed to identify world records of centenarian athletes in several sports and determine which represented the best performance when compared to all-age world records, all disciplines taken together. METHODS: all of the best performances achieved by centenarians were identified and compared in three disciplines: athletics, swimming and cycling. The performances were considered as an average of the respective speeds, except for jumping and throwing events for which the maximum distances performed were considered. Within each discipline, the decline in performance of centenarian athletes was expressed as a percentage of the world record for that discipline. In total, 60 performances of centenarian athletes were found. These performances belong to 19 individuals: 10 in athletics, 8 in swimming and 1 in cycling. RESULTS: the centenarian world record performed by Robert Marchand in one hour track cycling appears to be the best performance (-50.6% compared with the all-age world record in this discipline) achieved by a centenarian. CONCLUSIONS: although the physiological characteristics of Robert Marchand are certainly exceptional, his remarkable performance could also be due to the lower age-related decline for cycling performances compared with running and swimming. Our observations offer new perspectives on how the human body can resist the deleterious effects of ageing.


Asunto(s)
Anciano de 80 o más Años , Atletas , Rendimiento Atlético , Factores de Edad , Anciano de 80 o más Años/fisiología , Anciano de 80 o más Años/estadística & datos numéricos , Atletas/estadística & datos numéricos , Rendimiento Atlético/estadística & datos numéricos , Ciclismo/estadística & datos numéricos , Femenino , Humanos , Masculino , Deportes/estadística & datos numéricos , Atletismo/estadística & datos numéricos
11.
Exp Brain Res ; 233(1): 303-16, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25294498

RESUMEN

We investigated whether target position relative to the body modifies the postural adjustments produced when reaching movements are perturbed by unexpected displacements of the support surface. Eleven healthy participants reached to a target located at their midline, acromion height and at 130% their outstretched arm length. They stood on two force plates mounted on a moveable platform, capable of delivering horizontal forward ramp-and-hold perturbations. Three types of trial were given: reach only (R), perturbations only (P) and reaching movements during which a perturbation was given at a random delay after reach onset (RP). The target could be mounted either on a frame suspended from the ceiling such that it remained world-fixed (exocentric target, RP/X) or at an equivalent position on the moving platform so that it moved with the body (egocentric target, RP/E). Arm and body 3D kinematics and muscle activity from the right tibialis anterior (rTA) and soleus (rSOL) muscles were recorded. Normalised rTA activity was significantly lower in RP than in P trials. Furthermore, long-latency rTA muscle activity was lower in RP/E than in RP/X conditions when perturbations were given during either the arm deceleration phase of reaching. The rSOL muscle activity was lowest for the RP/E (arm deceleration) condition. When balance is perturbed during reaching, the manner in which the target moves relative to the body determines the muscle activity produced in the lower-limb muscles. Furthermore, a target that moves with the body requires a different regulation of muscle activity compared with one that moves independently of the body.


Asunto(s)
Adaptación Fisiológica/fisiología , Músculo Esquelético/fisiología , Postura/fisiología , Desempeño Psicomotor/fisiología , Fenómenos Biomecánicos/fisiología , Electromiografía , Femenino , Humanos , Masculino , Movimiento/fisiología , Equilibrio Postural/fisiología , Tiempo de Reacción/fisiología , Adulto Joven
12.
Exp Brain Res ; 232(4): 1185-91, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24449012

RESUMEN

This study asked whether individual differences in the influence of vision on postural stability could be used to predict the strength of subsequently induced visual illusions of self-motion (vection). In the experiment, we first measured spontaneous postural sway while subjects stood erect for 60 s with their eyes both open and both closed. We then showed our subjects two types of self-motion display: radially expanding optic flow (simulating constant velocity forwards self-motion) and vertically oscillating radially expanding optic flow (simulating constant velocity forwards self-motion combined with vertical head oscillation). As expected, subjects swayed more with their eyes closed (compared to open) and experienced more compelling illusions of self-motion with vertically oscillating (as opposed to smooth) radial flow. The extent to which participants relied on vision for postural stability-measured as the ratio of sway with eyes closed compared to that with eyes open-was found to predict vection strength. However, this was only the case for displays representing smooth self-motion. It seems that for oscillating displays, other factors, such as visual-vestibular interactions, may be more important.


Asunto(s)
Percepción de Movimiento/fisiología , Estimulación Luminosa/métodos , Equilibrio Postural/fisiología , Adolescente , Adulto , Femenino , Humanos , Masculino , Valor Predictivo de las Pruebas , Adulto Joven
13.
Ergonomics ; 57(9): 1427-39, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25012299

RESUMEN

This study investigated the effect of precision on time to task failure in a repetitive whole-body manual handling task. Twelve participants were required to repetitively lift a box weighing 65% of their single repetition maximum to shoulder height using either precise or unconstrained box placement. Muscle activity, forces exerted at the ground, 2D body kinematics, box acceleration and psychophysical measures of performance were recorded until task failure was reached. With precision, time to task failure for repetitive lifting was reduced by 72%, whereas the duration taken to complete a single lift and anterior deltoid muscle activation increased by 39% and 25%, respectively. Yet, no significant difference was observed in ratings of perceived exertion or heart rate at task failure. In conclusion, our results suggest that when accuracy is a characteristic of a repetitive manual handling task, physical work capacity will decline markedly. PRACTITIONER SUMMARY: The capacity to lift repetitively to shoulder height was reduced by 72% when increased accuracy was required to place a box upon a shelf. Lifting strategy and muscle activity were also modified, confirming practitioners should take into consideration movement precision when evaluating the demands of repetitive manual handling tasks.


Asunto(s)
Músculo Deltoides/fisiología , Elevación , Resistencia Física/fisiología , Acelerometría , Adolescente , Fenómenos Biomecánicos , Electromiografía , Femenino , Frecuencia Cardíaca , Humanos , Masculino , Psicofísica , Análisis y Desempeño de Tareas , Evaluación de Capacidad de Trabajo , Adulto Joven
14.
Exp Brain Res ; 227(1): 63-78, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23529512

RESUMEN

This study investigated whether postural configuration has a significant effect upon the kinematics of arm movements when humans performed unconstrained reach movements to visual targets. Eight subjects were required to reach to static visual targets (unperturbed REACH movements) or correct reach movements when the position of a target unexpectedly changed during the execution of a planned movement (perturbed reaches, or online corrections, OC). Subjects were required to execute REACH and OC movements in sitting and standing (STAND) positions. The height of the targets, distance from the right shoulder (acromion) and eccentricity in terms of the body midline were standardized between the two postural conditions before movements begun. Unperturbed REACH movements were executed to a central target placed at 130 % of outstretched arm length, along the midline (0°). Perturbed (OC) movements involved subjects initiating an arm movement to the 0° target upon its illumination. Two hundred milliseconds after the onset of the hand movement, the 0° target was extinguished and the target at 60° to the right of the midline (still at 130% outstretched arm distance) illuminated. Subjects had to correct their reach movements online to the new target. Results demonstrated that, despite evident differences in postural kinematics between the four experimental conditions (e.g. pelvis obliquity and trunk/pelvis rotation), postural configuration had little or no effect upon the endpoint kinematics of the finger. Most importantly, the STAND position, with its greater postural constraints, did not affect the time taken to initiate an OC, nor did it lengthen the time taken to complete the REACH or OC movements. Our results suggest, therefore, that postural constraints are accounted for by the central nervous system when executing complex arm reaching movements.


Asunto(s)
Brazo/fisiología , Movimiento/fisiología , Postura/fisiología , Adulto , Fenómenos Biomecánicos/fisiología , Femenino , Dedos/fisiología , Humanos , Masculino , Desempeño Psicomotor/fisiología , Rotación , Adulto Joven
15.
Artículo en Inglés | MEDLINE | ID: mdl-38083365

RESUMEN

Eccentric (ECC) cycling, compared to traditional concentric cycling, has been shown to improve muscle strength and neuromuscular control at a lower metabolic cost. Despite the popularity of this exercise in the sports and rehabilitation contexts, there is a gap in our knowledge of which muscles are behaving eccentrically during ECC cycling. To this end, we used a musculoskeletal model and computer simulations to calculate joint kinematics and muscle lengths during ECC cycling. Movements were recorded using 3D motion capture technology while cycling eccentrically on a custom-built semi-recumbent ergometer. The software Opensim was used to calculate joint kinematics and muscle lengths from recorded movements. We found that among the primary knee extensors, it was predominantly the Vastii muscles that acted eccentrically in the ECC cycling phase, with other lower limb muscles showing mixed eccentric/concentric activation. Additionally, the muscle force-length and force-velocity factors in the ECC phase suggest that changes to the participant's pose and pedaling speed may elicit larger active muscle forces. Our work provides an interesting application of musculoskeletal modeling to ECC cycling, and an alternative way to help understand in-vivo muscle mechanics during this activity.


Asunto(s)
Contracción Muscular , Músculo Esquelético , Humanos , Músculo Esquelético/fisiología , Contracción Muscular/fisiología , Extremidad Inferior , Ciclismo/fisiología , Simulación por Computador
16.
Front Physiol ; 13: 953517, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35874539

RESUMEN

Submaximal eccentric (ECC) cycling exercise is commonly used in research studies. No previous study has specified the required time naïve participants take to familiarize with submaximal ECC cycling. Therefore, we designed this study to determine whether critical indicators of cycling reliability and variability stabilize during 15 min of submaximal, semi-recumbent ECC cycling (ECC cycling). Twenty-two participants, aged between 18-51 years, volunteered to complete a single experimental session. Each participant completed three peak eccentric torque protocol (PETP) tests, nine countermovement jumps and 15 min of submaximal (i.e., 10% peak power output produced during the PETP tests) ECC cycling. Muscle activation patterns were recorded from six muscles (rectus femoris, RF; vastus lateralis, VL; vastus medialis, VM; soleus, SOL; medial gastrocnemius, GM; tibialis anterior, TA), during prescribed-intensity ECC cycling, using electromyography (EMG). Minute-to-minute changes in the reliability and variability of EMG patterns were examined using intra-class correlation coefficient (ICC) and variance ratios (VR). Differences between target and actual power output were also used as an indicator of familiarization. Activation patterns for 4/6 muscles (RF, VL, VM and GM) became more consistent over the session, the RF, VL and VM increasing from moderate (ICC = 0.5-0.75) to good (ICC = 0.75-0.9) reliability by the 11th minute of cycling and the GM good reliability from the 1st minute (ICC = 0.79, ICC range = 0.70-0.88). Low variability (VR ≤ 0.40) was maintained for VL, VM and GM from the 8th, 8th and 1st minutes, respectively. We also observed a significant decrease in the difference between actual and target power output (χ2 14 = 30.895, p = 0.006, W = 0.105), expressed primarily between the 2nd and 3rd minute of cycling (Z = -2.677, p = 0.007). Indicators of familiarization during ECC cycling, including deviations from target power output levels and the reliability and variability of muscle activation patterns stabilized within 15 min of cycling. Based upon this data, it would be reasonable for future studies to allocate ∼ 15 min to familiarize naïve participants with a submaximal ECC cycling protocol.

17.
Front Sports Act Living ; 4: 1047369, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36704263

RESUMEN

Purpose: To characterize alterations of lower limb intersegmental coordination during the acute phase of running after cycling among highly trained triathletes using an analysis of planar covariation. Methods: Nine highly trained triathletes completed a control run (CR) and a run after transitioning from cycling exercise (transition run, or TR condition) on a motorized treadmill at a self-selected pace. Sagittal plane kinematics were recorded using a 3D Vicon motion capture system. Intersegmental coordination of the thigh, shank and foot segments of the right lower limb and run loop planarity were calculated during running before cycling and at four different times after the end of cycling. Results: PCA showed a significant within-subject phase shift of the run loop planarity (F = 6.66, P = 0.01). Post hoc analysis showed significance median differences increase for u 3t parameter between CRSS vs. TR30 (P = 0.01), TRt1/2 (P = 0.01) and TRMRT (P = 0.01). No difference for u 3t parameter existed between CRSS vs. TRSS. Conclusion: Prior variable-cadence, moderate intensity cycling has a significant effect on run loop planarity and therefore intersegmental coordination during the acute transition phase among highly trained triathletes. However, alterations to lower limb coordination are corrected by the 3rd minute after the beginning of the post cycle run. We suggest that planar covariation can be used as a more sensitive measure of cycling-induced variations in running to characterize adaptation in elite and importantly, developing athletes.

18.
J Neurophysiol ; 105(5): 2375-88, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21346210

RESUMEN

The aim of this study was to investigate how humans correct ongoing arm movements while standing. Specifically, we sought to understand whether the postural adjustments in the legs required for online corrections of arm movements are predictive or rely on feedback from the moving limb. To answer this question we measured online corrections in arm and leg muscles during pointing movements while standing. Nine healthy right-handed subjects reached with their dominant arm to a visual target in front of them and aligned with their midline. In some trials, the position of the target would switch from the central target to one of the other targets located 15°, 30°, or 45° to the right of the central (midline) target. For each target correction, we measured the time at which arm kinematics, ground reaction forces, and arm and leg muscle electromyogram significantly changed in response to the target displacement. Results show that postural adjustments in the left leg preceded kinematic corrections in the limb. The corrective postural muscle activity in the left leg consistently preceded the corrective reaching muscle activity in the right arm. Our results demonstrate that corrections of arm movements in response to target displacement during stance are preceded by postural adjustments in the leg contralateral to the direction of target shift. Furthermore, postural adjustments preceded both the hand trajectory correction and the arm-muscle activity responsible for it, which suggests that the central nervous system does not depend on feedback from the moving arm to modify body posture during voluntary movement. Instead, postural adjustments lead the online correction in the arm the same way they lead the initiation of voluntary arm movements. This suggests that forward models for voluntary movements executed during stance incorporate commands for posture that are produced on the basis of the required task demands.


Asunto(s)
Brazo/fisiología , Movimiento/fisiología , Equilibrio Postural/fisiología , Postura/fisiología , Adulto , Electromiografía/métodos , Femenino , Humanos , Masculino , Músculo Esquelético/fisiología , Estimulación Luminosa/métodos , Desempeño Psicomotor/fisiología , Adulto Joven
19.
Eur J Appl Physiol ; 111(8): 1687-94, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21210278

RESUMEN

The aims of this study were: (i) to analyze age-related declines in swimming, cycling, and running performances for road-based and off-road triathlons, and (ii) to compare age-related changes in these three disciplines between road-based and off-road triathlons. Swimming, cycling, running and total time performances of the top five males between 20 and 70 years of age (in 5-year intervals) were analyzed for short distance road-based (1.5 km swim, 40 km cycle, and 10 km run) and off-road (1.5 km swim, 30 km mountain bike, and 11 km trail run) triathlons at the 2009 World Championships. Independently of age, there was a lesser age-related decline in cycling performance (P < 0.01) compared to running and swimming for road-based triathlon. In contrast, age-related decline did not differ between the three locomotion modes for off-road triathlon. With advancing age, the performance decline was less pronounced (P < 0.01) for road-based than for off-road triathlon in swimming (≥65 years), cycling (≥50 years), running (≥60 years), and total event (≥55 years) times, respectively. These results suggest that the rate of the decline in performance for off-road triathlon is greater than for road-based triathlon, indicating that the type of discipline (road vs. mountain bike cycling and road vs. trail running) exerts an important influence on the magnitude of the age-associated changes in triathlon performance.


Asunto(s)
Envejecimiento/fisiología , Rendimiento Atlético/fisiología , Ciclismo/fisiología , Carrera/fisiología , Natación/fisiología , Adulto , Anciano , Prueba de Esfuerzo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Vehículos a Motor Todoterreno , Atletismo , Adulto Joven
20.
Front Physiol ; 12: 649282, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33732172

RESUMEN

Estimation of the age-related decline in athletic performance by analyzing age-group world record performances presents an inherent limitation because the records generally belong to different individuals. Longitudinal studies describing the changes in performance with advancing age for the same individuals with a consistent training regimen are more appropriate to determine age-related changes in performance. The aim of this longitudinal study was to examine the age-related decline in running performance of sub 3-h marathoners for five consecutive calendar decades. The best marathon performances for each decade from the 1970s to the 2010s were analyzed for 40 sub 3-h runners (39 males and 1 female). The cohort mean personal best performance was 2 h 23 min ± 9 min at an age of 28.6 ± 4.7 years. The mean difference in age between the first and the last sub 3-h marathon races was 32.9 ± 1.6 years. The time difference in marathon performance between the personal best and the worst performance during the 5th decade was 26 ± 9 min, corresponding to a mean increase of 1 min 4 s per year, i.e., a decrease in running speed of 0.67 ± 0.29% per year. These results suggest that with consistent training and racing regimens, it is possible to limit the age-related decline in marathon performance to less than 7% per decade at least until 60 years of age. Further studies are required to verify if such a low rate of age-related decline in endurance performance could be maintained after 60 years of age.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA