Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 555(7696): 382-386, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29489751

RESUMEN

Resistance to infection is critically dependent on the ability of pattern recognition receptors to recognize microbial invasion and induce protective immune responses. One such family of receptors are the C-type lectins, which are central to antifungal immunity. These receptors activate key effector mechanisms upon recognition of conserved fungal cell-wall carbohydrates. However, several other immunologically active fungal ligands have been described; these include melanin, for which the mechanism of recognition is hitherto undefined. Here we identify a C-type lectin receptor, melanin-sensing C-type lectin receptor (MelLec), that has an essential role in antifungal immunity through recognition of the naphthalene-diol unit of 1,8-dihydroxynaphthalene (DHN)-melanin. MelLec recognizes melanin in conidial spores of Aspergillus fumigatus as well as in other DHN-melanized fungi. MelLec is ubiquitously expressed by CD31+ endothelial cells in mice, and is also expressed by a sub-population of these cells that co-express epithelial cell adhesion molecule and are detected only in the lung and the liver. In mouse models, MelLec was required for protection against disseminated infection with A. fumigatus. In humans, MelLec is also expressed by myeloid cells, and we identified a single nucleotide polymorphism of this receptor that negatively affected myeloid inflammatory responses and significantly increased the susceptibility of stem-cell transplant recipients to disseminated Aspergillus infections. MelLec therefore recognizes an immunologically active component commonly found on fungi and has an essential role in protective antifungal immunity in both mice and humans.


Asunto(s)
Aspergillus fumigatus/inmunología , Lectinas Tipo C/inmunología , Melaninas/inmunología , Naftoles/inmunología , Animales , Aspergilosis/inmunología , Aspergilosis/microbiología , Aspergilosis/prevención & control , Aspergillus fumigatus/química , Aspergillus fumigatus/patogenicidad , Pared Celular/química , Pared Celular/inmunología , Femenino , Humanos , Macrófagos/inmunología , Melaninas/química , Ratones , Ratones Endogámicos C57BL , Naftoles/química , Ratas , Ratas Sprague-Dawley , Esporas Fúngicas/química , Esporas Fúngicas/inmunología , Especificidad por Sustrato
2.
Eur J Immunol ; 51(9): 2341-2344, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34114658

RESUMEN

Our data reveal that selection of enzymes for generating single cell suspensions from murine tissues influences detection of surface expression of antifungal CLRs. Using a method that most preserves receptor expression, we show that non-myeloid expression of antifungal CLRs is limited to MelLec on endothelial cells in murine mucosal tissues.


Asunto(s)
Células Endoteliales/metabolismo , Células Epiteliales/metabolismo , Hongos/inmunología , Lectinas Tipo C/metabolismo , Membrana Mucosa/inmunología , Animales , Aspergillus/inmunología , Candida/inmunología , Cryptococcus/inmunología , Ratones , Membrana Mucosa/metabolismo , Membrana Mucosa/microbiología
3.
PLoS Pathog ; 16(1): e1007927, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31999794

RESUMEN

During the course of fungal infection, pathogen recognition by the innate immune system is critical to initiate efficient protective immune responses. The primary event that triggers immune responses is the binding of Pattern Recognition Receptors (PRRs), which are expressed at the surface of host immune cells, to Pathogen-Associated Molecular Patterns (PAMPs) located predominantly in the fungal cell wall. Most fungi have mannosylated PAMPs in their cell walls and these are recognized by a range of C-type lectin receptors (CTLs). However, the precise spatial distribution of the ligands that induce immune responses within the cell walls of fungi are not well defined. We used recombinant IgG Fc-CTLs fusions of three murine mannan detecting CTLs, including dectin-2, the mannose receptor (MR) carbohydrate recognition domains (CRDs) 4-7 (CRD4-7), and human DC-SIGN (hDC-SIGN) and of the ß-1,3 glucan-binding lectin dectin-1 to map PRR ligands in the fungal cell wall of fungi grown in vitro in rich and minimal media. We show that epitopes of mannan-specific CTL receptors can be clustered or diffuse, superficial or buried in the inner cell wall. We demonstrate that PRR ligands do not correlate well with phylogenetic relationships between fungi, and that Fc-lectin binding discriminated between mannosides expressed on different cell morphologies of the same fungus. We also demonstrate CTL epitope differentiation during different phases of the growth cycle of Candida albicans and that MR and DC-SIGN labelled outer chain N-mannans whilst dectin-2 labelled core N-mannans displayed deeper in the cell wall. These immune receptor maps of fungal walls of in vitro grown cells therefore reveal remarkable spatial, temporal and chemical diversity, indicating that the triggering of immune recognition events originates from multiple physical origins at the fungal cell surface.


Asunto(s)
Pared Celular/inmunología , Hongos/inmunología , Lectinas Tipo C/inmunología , Mananos/inmunología , Micosis/inmunología , Filogenia , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/inmunología , Pared Celular/química , Pared Celular/genética , Hongos/química , Hongos/clasificación , Hongos/genética , Humanos , Lectinas Tipo C/genética , Mananos/análisis , Micosis/genética , Micosis/microbiología , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/inmunología
4.
Eur J Immunol ; 49(12): 2127-2133, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31580478

RESUMEN

C-type lectin receptors (CLRs) are essential for multicellular existence, having diverse functions ranging from embryonic development to immune function. One subgroup of CLRs is the Dectin-1 cluster, comprising of seven receptors including MICL, CLEC-2, CLEC-12B, CLEC-9A, MelLec, Dectin-1, and LOX-1. Reflecting the larger CLR family, the Dectin-1 cluster of receptors has a broad range of ligands and functions, but importantly, is involved in numerous pathophysiological processes that regulate health and disease. Indeed, these receptors have been implicated in development, infection, regulation of inflammation, allergy, transplantation tolerance, cancer, cardiovascular disease, arthritis, and other autoimmune diseases. In this mini-review, we discuss the latest advancements in elucidating the function(s) of each of the Dectin-1 cluster CLRs, focussing on their physiological roles and involvement in disease.


Asunto(s)
Artritis/inmunología , Enfermedades Autoinmunes/inmunología , Enfermedades Cardiovasculares/inmunología , Hipersensibilidad/inmunología , Lectinas Tipo C/inmunología , Familia de Multigenes/inmunología , Neoplasias/inmunología , Inmunología del Trasplante , Animales , Artritis/genética , Enfermedades Autoinmunes/genética , Enfermedades Cardiovasculares/genética , Humanos , Hipersensibilidad/genética , Inflamación/genética , Inflamación/inmunología , Lectinas Tipo C/genética , Neoplasias/genética
5.
Eur J Clin Microbiol Infect Dis ; 39(2): 353-360, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31786695

RESUMEN

Genetic variation in Toll-like receptors (TLRs) has previously been associated with susceptibility to complicated skin and skin structure infections (cSSSIs). The aim of this study was to investigate associations between the severity of cSSSIs, i.e., major abscesses and diabetic foot infections (DFIs), and a set of genetic polymorphisms in the Toll-like receptor pathway. A total of 121 patients with major abscesses and 132 with DFIs participating in a randomized clinical trial were genotyped for 13 nonsynonymous single-nucleotide polymorphisms (SNPs) in genes coding for TLRs and the signaling adaptor molecule TIRAP. Infection severity was defined by lesion size at clinical presentation for both types of infections. The PEDIS infection score was also used to define severity of DFIs. Linear regression models were used to study factors independently associated with severity. In patients with large abscesses, hetero- or homozygosity for the allelic variant TLR6 (P249S) was associated with significantly smaller lesions while homozygosity for the allelic variant TLR1 (R80T) was associated with significantly larger lesions. PRRs genes were not significantly associated with PEDIS. However, patients with DFI hetero- or homozygous for the allelic variant TLR1 (S248N) had significantly larger lesions. Polymorphisms in TLR1 and TLR6 influence the severity of cSSSIs as assessed by the lesion size of major abscesses and DFIs. ClinicalTrial.gov Identifier: NCT00402727.


Asunto(s)
Absceso/etiología , Pie Diabético/etiología , Predisposición Genética a la Enfermedad , Glicoproteínas de Membrana/genética , Polimorfismo de Nucleótido Simple , Receptores de Interleucina-1/genética , Receptor Toll-Like 1/genética , Receptor Toll-Like 6/genética , Absceso/diagnóstico , Adulto , Anciano , Alelos , Comorbilidad , Pie Diabético/diagnóstico , Susceptibilidad a Enfermedades/inmunología , Femenino , Estudios de Asociación Genética , Genotipo , Humanos , Masculino , Persona de Mediana Edad
6.
Cytokine ; 77: 196-202, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26364993

RESUMEN

Coxiella burnetii, the causative agent of Q fever, is recognized by TLR2. TLR10 can act as an inhibitory receptor on TLR2-derived immune responses. Therefore, we investigated the role of TLR10 on C. burnetii-induced cytokine production and assessed whether genetic polymorphisms in TLR10 influences the development of chronic Q fever. HEK293 cells, transfected with TLR2, TLR10 or TLR2/TLR10, and human peripheral blood mononuclear cells (PBMCs) in the presence of anti-TLR10, were stimulated with C. burnetii. In both assays, the absence of TLR10 resulted in increased cytokine responses after C. burnetii stimulation. In addition, the effect of single nucleotide polymorphisms (SNPs) in TLR10 was examined in healthy volunteers whose PBMCs were stimulated with C. burnetii Nine Mile or the Dutch outbreak isolate C. burnetii 3262. Individuals bearing SNPs in TLR10 displayed increased cytokine production upon C. burnetii 3262 stimulation. Furthermore, 139 chronic Q fever patients and 220 controls were genotyped for TLR10 N241H, I775V and I369L. None of these polymorphisms were associated with increased susceptibility to chronic Q fever. In conclusion, TLR10 has an inhibitory effect on in vitro cytokine production by C. burnetii, but the presence of TLR10 polymorphisms does not lead to an increased risk of developing chronic Q fever.


Asunto(s)
Citocinas/metabolismo , Polimorfismo de Nucleótido Simple , Fiebre Q/genética , Receptor Toll-Like 10/genética , Adulto , Anciano , Células Cultivadas , Coxiella burnetii/clasificación , Coxiella burnetii/fisiología , Femenino , Frecuencia de los Genes , Genotipo , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/microbiología , Masculino , Persona de Mediana Edad , Fiebre Q/metabolismo , Fiebre Q/microbiología , Factores de Riesgo , Especificidad de la Especie , Adulto Joven
7.
J Infect Dis ; 212(9): 1491-9, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25895985

RESUMEN

BACKGROUND: Toll-like receptors (TLRs) play a central role in the innate immune response to complicated skin and skin structure infections (cSSSIs), with TLR10 being the first family member known to have an inhibitory function. This study assessed the role of TLR10 in recognition of cSSSI-related pathogens and whether genetic variation in TLR10 influences susceptibility to cSSSIs. METHODS: Human peripheral blood mononuclear cells (PBMCs) preincubated with anti-TLR10 antibody and HEK-293 cells overexpressing TLRs were exposed to cSSSI pathogens, and cytokine secretion was determined by enzyme-linked immunosorbent assay. A total of 318 patients with cSSSI and 328 healthy controls were genotyped for 4 nonsynonymous single-nucleotide polymorphisms in TLR10, and functional consequences of the TLR10 SNPs were assessed via in vitro stimulation assays. RESULTS: PBMC stimulation with cSSSI pathogens in the presence of TLR10 neutralizing antibody significantly increased interleukin 6 secretion. Overexpression of TLR10 completely abrogated TLR2-induced interleukin 8 secretion by HEK-293 cells in response to cSSSI pathogens. Three polymorphisms in TLR10, I775L, I369L, and N241H, were associated with reduced susceptibility to cSSSIs. The presence of the TLR10 alleles 775L, 369L, or 241H increased interleukin 6 secretion by PBMCs in response to cSSSI pathogens. CONCLUSIONS: TLR10 is a modulatory receptor of innate immune responses to cSSSI-related pathogens, and genetic variants in TLR10 are associated with protection against cSSSIs.


Asunto(s)
Inmunidad Innata , Polimorfismo de Nucleótido Simple , Enfermedades de la Piel/inmunología , Piel/patología , Receptor Toll-Like 10/genética , Alelos , Bacteroides fragilis , Estudios de Casos y Controles , Ensayo de Inmunoadsorción Enzimática , Escherichia coli , Predisposición Genética a la Enfermedad , Genotipo , Técnicas de Genotipaje , Células HEK293 , Humanos , Interleucina-6/metabolismo , Leucocitos Mononucleares/metabolismo , Modelos Logísticos , Mutación Missense , Piel/inmunología , Piel/microbiología , Enfermedades de la Piel/genética , Enfermedades de la Piel/microbiología , Staphylococcus aureus , Receptor Toll-Like 10/metabolismo
8.
J Infect Dis ; 210(2): 311-8, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24511099

RESUMEN

BACKGROUND: Complicated skin and skin structure infections (cSSSIs) are characterized by infections with gram-positive or gram-negative aerobic or anaerobic bacteria, as well as by a polymicrobial etiology. These invading microorganisms are recognized by pattern-recognition receptors (PRRs) of the innate immune system. This study assessed whether genetic variation in genes encoding PRRs influences the susceptibility to cSSSIs. METHODS: A total of 318 patients with cSSSI and 328 healthy controls were genotyped for 9 nonsynonymous single-nucleotide polymorphisms (SNPs) in PRR genes coding for Toll-like receptors (TLRs) 1, 2, 4, and 6; NOD-like receptor 2; and the signaling adaptor molecule TIRAP. Associations between susceptibility to cSSSIs and a SNP were investigated by means of logistic regression models. In an additional cohort of 74 healthy individuals in whom the same SNPs were genotyped, peripheral blood mononuclear cells (PBMCs) were obtained and stimulated with Staphylococcus aureus. Interleukin 6 concentrations were determined in supernatants by enzyme-linked immunosorbent assay to determine the correlation between genotypes and levels of IL-6 secretion. RESULTS: In the genetic association analysis, polymorphisms in TLR1 (S248N and R80T), TLR2 (P631H), and TLR6 (P249S) were associated with an increased susceptibility to cSSSIs. No association with susceptibility to cSSSIs was observed for polymorphisms TLR2 (R753Q), TLR4 (D299G and T399I), NOD2 (P268S), and TIRAP (S180L). In the functional analysis, individuals bearing the TLR1 248N or 80T allele showed lower IL-6 secretion upon stimulation with S. aureus. CONCLUSIONS: Polymorphisms in TLR1, TLR2, and TLR6 are associated with increased susceptibility to cSSSIs. For TLR1, impaired proinflammatory cytokine production due to the polymorphism is most likely the mechanism mediating this effect.


Asunto(s)
Predisposición Genética a la Enfermedad , Enfermedades Cutáneas Bacterianas/genética , Enfermedades Cutáneas Bacterianas/inmunología , Piel/inmunología , Receptor Toll-Like 1/genética , Receptor Toll-Like 2/genética , Receptor Toll-Like 6/genética , Estudios de Asociación Genética , Humanos , Polimorfismo de Nucleótido Simple
9.
Microbiol Mol Biol Rev ; 88(2): e0002123, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38832801

RESUMEN

SUMMARYA significant increase in the incidence of Candida-mediated infections has been observed in the last decade, mainly due to rising numbers of susceptible individuals. Recently, the World Health Organization published its first fungal pathogen priority list, with Candida species listed in medium, high, and critical priority categories. This review is a synthesis of information and recent advances in our understanding of two of these species-Candida albicans and Candida glabrata. Of these, C. albicans is the most common cause of candidemia around the world and is categorized as a critical priority pathogen. C. glabrata is considered a high-priority pathogen and has become an increasingly important cause of candidemia in recent years. It is now the second most common causative agent of candidemia in many geographical regions. Despite their differences and phylogenetic divergence, they are successful as pathogens and commensals of humans. Both species can cause a broad variety of infections, ranging from superficial to potentially lethal systemic infections. While they share similarities in certain infection strategies, including tissue adhesion and invasion, they differ significantly in key aspects of their biology, interaction with immune cells, host damage strategies, and metabolic adaptations. Here we provide insights on key aspects of their biology, epidemiology, commensal and pathogenic lifestyles, interactions with the immune system, and antifungal resistance.


Asunto(s)
Antifúngicos , Candida albicans , Candida glabrata , Candidiasis , Farmacorresistencia Fúngica , Candida glabrata/patogenicidad , Humanos , Candida albicans/patogenicidad , Candidiasis/microbiología , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Animales , Candidemia/microbiología , Candidemia/epidemiología , Filogenia , Interacciones Huésped-Patógeno
10.
bioRxiv ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39071334

RESUMEN

The fungal community of the skin microbiome is dominated by a single genus, Malassezia. Besides its symbiotic lifestyle at the host interface, this commensal yeast has also been associated with diverse inflammatory skin diseases in humans and pet animals. Stable colonization is maintained by antifungal type 17 immunity. The mechanisms driving Th17 responses to Malassezia remain, however, unclear. Here, we show that the C-type lectin receptors Mincle, Dectin-1, and Dectin-2 recognize conserved patterns in the cell wall of Malassezia and induce dendritic cell activation in vitro, while only Dectin-2 is required for Th17 activation during experimental skin colonization in vivo. In contrast, Toll-like receptor recognition was redundant in this context. Instead, inflammatory IL-1 family cytokines signaling via MyD88 were also implicated in Th17 activation in a T cell-intrinsic manner. Taken together, we characterized the pathways contributing to protective immunity against the most abundant member of the skin mycobiome. This knowledge contributes to the understanding of barrier immunity and its regulation by commensals and is relevant considering how aberrant immune responses are associated with severe skin pathologies.

11.
Nat Commun ; 15(1): 5817, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987270

RESUMEN

Respiratory infections caused by the human fungal pathogen Aspergillus fumigatus are a major cause of mortality for immunocompromised patients. Exposure to these pathogens occurs through inhalation, although the role of the respiratory epithelium in disease pathogenesis has not been fully defined. Employing a primary human airway epithelial model, we demonstrate that fungal melanins potently block the post-translational secretion of the chemokines CXCL1 and CXCL8 independent of transcription or the requirement of melanin to be phagocytosed, leading to a significant reduction in neutrophil recruitment to the apical airway both in vitro and in vivo. Aspergillus-derived melanin, a major constituent of the fungal cell wall, dampened airway epithelial chemokine secretion in response to fungi, bacteria, and exogenous cytokines. Furthermore, melanin muted pathogen-mediated calcium fluxing and hindered actin filamentation. Taken together, our results reveal a critical role for melanin interaction with airway epithelium in shaping the host response to fungal and bacterial pathogens.


Asunto(s)
Aspergillus fumigatus , Calcio , Quimiocina CXCL1 , Interleucina-8 , Melaninas , Melaninas/metabolismo , Humanos , Interleucina-8/metabolismo , Calcio/metabolismo , Quimiocina CXCL1/metabolismo , Animales , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/microbiología , Ratones , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Quimiocinas/metabolismo , Ratones Endogámicos C57BL
12.
Cell Surf ; 10: 100109, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37520856

RESUMEN

The dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) is an innate immune C-type lectin receptor that recognizes carbohydrate-based pathogen associated with molecular patterns of various bacteria, fungi, viruses and protozoa. Although a range of highly mannosylated glycoproteins have been shown to induce signaling via DC-SIGN, precise structure of the recognized oligosaccharide epitope is still unclear. Using the array of oligosaccharides related to selected fragments of main fungal antigenic polysaccharides we revealed a highly specific pentamannoside ligand of DC-SIGN, consisting of α-(1 â†’ 2)-linked mannose chains with one inner α-(1 â†’ 3)-linked unit. This structural motif is present in Candida albicans cell wall mannan and corresponds to its antigenic factors 4 and 13b. This epitope is not ubiquitous in other yeast species and may account for the species-specific nature of fungal recognition via DC-SIGN. The discovered highly specific oligosaccharide ligands of DC-SIGN are tractable tools for interdisciplinary investigations of mechanisms of fungal innate immunity and anti-Candida defense. Ligand- and receptor-based NMR data demonstrated the pentasaccharide-to-DC-SIGN interaction in solution and enabled the deciphering of the interaction topology.

13.
Cell Surf ; 10: 100110, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37559873

RESUMEN

Candida auris is a multi-drug resistant human fungal pathogen that has become a global threat to human health due to its drug resistant phenotype, persistence in the hospital environment and propensity for patient to patient spread. Isolates display variable aggregation that may affect the relative virulence of strains. Therefore, dissection of this phenotype has gained substantial interest in recent years. We studied eight clinical isolates from four different clades (I-IV); four of which had a strongly aggregating phenotype and four of which did not. Genome analysis identified polymorphisms associated with loss of cell surface proteins were enriched in weakly-aggregating strains. Additionally, we identified down-regulation of chitin synthase genes involved in the synthesis of the chitinous septum. Characterisation of the cells revealed no ultrastructural defects in cytokinesis or cell separation in aggregating isolates. Strongly and weakly aggregating strains did not differ in net surface charge or in cell surface hydrophobicity. The capacity for aggregation and for adhesion to polystyrene microspheres were also not correlated. However, aggregation and extracellular matrix formation were all increased at higher growth temperatures, and treatment with the amyloid protein inhibitor Thioflavin-T markedly attenuated aggregation. Genome analysis further indicated strain specific differences in the genome content of GPI-anchored proteins including those encoding genes with the potential to form amyloid proteins. Collectively our data suggests that aggregation is a complex strain and temperature dependent phenomenon that may be linked in part to the ability to form extracellular matrix and cell surface amyloids.

14.
Cytokine ; 60(3): 861-9, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22998942

RESUMEN

Bacteroides fragilis, an intestinal flora commensal microorganism, is frequently isolated from abscesses and soft tissue infections. This study aimed to identify pattern recognition receptors (PRRs) involved in B. fragilis recognition and to characterize the induced cytokine profile. Human PBMCs were stimulated with heat-killed B. fragilis and cytokine levels were determined by ELISA. Roles of individual PRRs were assessed using specific blockers of receptor signaling pathways and PBMCs carrying single nucleotide polymorphisms of PRR genes. Cell lines expressing human TLR2 or TLR4 were employed to assess TLR-specificity of B. fragilis. TLR1, TLR2 and NOD2 were the main PRRs responsible for recognition of B. fragilis, while TLR4, TLR6, NOD1 and Dectin-1 were not involved. B. fragilis induced strong IL-6 and IL-8, moderate IL-1ß and TNF-α, and poor IL-10, IL-17, IL-23 and IFN-γ production. This study identifies the receptor pathways of the innate immune response to B. fragilis, and thus provides new insights in the host defense against B. fragilis.


Asunto(s)
Bacteroides fragilis/inmunología , Citocinas/biosíntesis , Proteína Adaptadora de Señalización NOD2/metabolismo , Receptor Toll-Like 1/inmunología , Receptor Toll-Like 2/inmunología , Adulto , Anciano , Animales , Infecciones por Bacteroides/inmunología , Infecciones por Bacteroides/metabolismo , Secuencia de Bases , Células CHO , Línea Celular , Cricetinae , Citocinas/genética , Femenino , Humanos , Lectinas Tipo C/genética , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/microbiología , Masculino , Persona de Mediana Edad , Proteína Adaptadora de Señalización NOD2/genética , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Receptor Toll-Like 1/genética , Receptor Toll-Like 1/metabolismo , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Adulto Joven
15.
Arthritis Rheum ; 63(10): 2939-48, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21618207

RESUMEN

OBJECTIVE: Interleukin-22 (IL-22) is a mediator in antimicrobial responses and inflammatory autoimmune diseases. Although IL-22 and its receptor, IL-22R, have been identified in the synovium of rheumatoid arthritis patients, the source of IL-22 and its contribution to disease pathogenicity remain to be established. This study was undertaken to investigate the regulation of IL-22 by Th17 cells in vitro and to evaluate the potential for IL-22 depletion in an experimental arthritis model using mice deficient in the IL-1 receptor antagonist (IL-1Ra-/-). METHODS: Naive murine T cells were cultured under conditions leading to polarization of the cells into subsets of Th1, Th2, induced Treg, and Th17. Cytokines were measured in the culture supernatants, and the cells were analyzed by fluorescence-activated cell sorting. Tissue samples from the inflamed ankle synovium of IL-1Ra-/- mice were isolated, and messenger RNA levels of marker genes were quantified. IL-1Ra-/- mice were treated with neutralizing anti-IL-22 antibodies. Synovial cells were isolated from the inflamed tissue and sorted into fractions for analysis of cytokine production. RESULTS: In vitro tests showed that Th17 cells produced high levels of IL-22 after stimulation with IL-1 or IL-23. Interestingly, a synergistic increase in the production of IL-22 was observed after combining IL-1 and IL-23. In vivo, IL-1Ra-/- mice displayed a progressive erosive arthritis, characterized by up-regulation of IL-17 in mildly and severely inflamed tissue, whereas the levels of IL-22 and IL-22R were increased only in severely inflamed synovia. Anti-IL-22 treatment of IL-1Ra-/- mice significantly reduced the inflammation and bone erosion. Analysis of isolated single cells from the inflamed synovia revealed that IL-22 was mainly produced by IL-17-expressing T cells. CONCLUSION: These findings suggest that IL-22 plays an important role in IL-1-driven chronic joint destruction.


Asunto(s)
Artritis Experimental/inmunología , Huesos/metabolismo , Interleucina-1/metabolismo , Interleucinas/metabolismo , Membrana Sinovial/metabolismo , Células Th17/inmunología , Animales , Artritis Experimental/metabolismo , Huesos/patología , Diferenciación Celular , Inflamación/metabolismo , Interleucina-23/metabolismo , Articulaciones/metabolismo , Articulaciones/patología , Ratones , Células Th17/metabolismo , Interleucina-22
16.
Front Immunol ; 12: 675702, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34122436

RESUMEN

Environmental factors, particularly fungi, influence the pathogenesis of allergic airway inflammation, but the mechanisms underlying these effects are still unclear. Melanin is one fungal component which is thought to modulate pulmonary inflammation. We recently identified a novel C-type lectin receptor, MelLec (Clec1a), which recognizes fungal 1,8-dihydroxynaphthalene (DHN)-melanin and is able to regulate inflammatory responses. Here we show that MelLec promotes pulmonary allergic inflammation and drives the development of Th17 T-cells in response to spores of Aspergillus fumigatus. Unexpectedly, we found that MelLec deficiency was protective, with MelLec-/- animals showing normal weight gain and significantly reduced pulmonary inflammation in our allergic model. The lungs of treated MelLec-/- mice displayed significantly reduced inflammatory foci and reduced bronchial wall thickening, which correlated with a reduced cellular influx (particularly neutrophils and inflammatory monocytes) and levels of inflammatory cytokines and chemokines. Notably, fungal burdens were increased in MelLec-/- animals, without apparent adverse effects, and there were no alterations in the survival of these mice. Characterization of the pulmonary T-cell populations, revealed a significant reduction in Th17 cells, and no alterations in Th2, Th1 or Treg cells. Thus, our data reveal that while MelLec is required to control pulmonary fungal burden, the inflammatory responses mediated by this receptor negatively impact the animal welfare in this allergic model.


Asunto(s)
Aspergillus fumigatus/patogenicidad , Asma/etiología , Lectinas Tipo C/fisiología , Animales , Asma/inmunología , Bronquios/patología , Citocinas/biosíntesis , Melaninas/fisiología , Ratones , Ratones Endogámicos C57BL , Células Th17/inmunología
17.
Sci Rep ; 10(1): 17352, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33060696

RESUMEN

Acute appendicitis is a common surgical emergency worldwide. Exaggerated immune responses could be associated with appendicitis. This study aimed at characterizing immune responses towards a large variety of gut commensals and pathogens, and pattern recognition receptor (PRR) ligands, and investigating the course of systemic inflammation in a prospective cohort of acute appendicitis patients. PBMC responses of 23 patients of the cohort and 23 healthy controls were characterized more than 8 months post-surgery. Serum cytokine levels were measured in 23 patients at the time of appendicitis and after one month. CRP, WBC and percentage of neutrophils were analyzed in the total cohort of 325 patients. No differences in PBMC responses were found between patients and controls. Stronger IL-10 responses were found following complicated appendicitis. A trend towards lower IL-8 responses was shown following gangrenous appendicitis. Serum IL-10 and IL-6 were significantly elevated at presentation, and IL-6, IL-8 and TNF-α levels were higher in complicated appendicitis. Routine biomarkers could predict severity of appendicitis with high specificities, but low sensitivities. Cytokine responses in patients following acute appendicitis did not differ from healthy controls. Higher serum cytokine levels were found in acute complicated and gangrenous cases. Further research into discriminative biomarkers is warranted.


Asunto(s)
Apendicitis/inmunología , Inmunidad Innata , Enfermedad Aguda , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , Proteína C-Reactiva/análisis , Niño , Preescolar , Estudios de Cohortes , Citocinas/sangre , Femenino , Humanos , Mediadores de Inflamación/sangre , Masculino , Persona de Mediana Edad , Adulto Joven
18.
Diagn Microbiol Infect Dis ; 85(2): 263-5, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27112830

RESUMEN

Direct determination by pathogen-specific real-time PCR assay for Bacteroides fragilis was compared to culture in major abscess and diabetic foot infection biopsy samples. Real-time PCR resulted in an increased detection rate of 12% for B. fragilis and could improve the detection of B. fragilis in clinical samples.


Asunto(s)
Absceso/microbiología , Técnicas Bacteriológicas/métodos , Infecciones por Bacteroides/diagnóstico , Bacteroides fragilis/aislamiento & purificación , Biopsia , Pie Diabético/microbiología , Técnicas de Diagnóstico Molecular/métodos , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa , Sensibilidad y Especificidad
19.
Future Microbiol ; 10(6): 989-1008, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26059622

RESUMEN

Cells of the innate immune system are equipped with surface and cytoplasmic receptors for microorganisms called pattern recognition receptors (PRRs). PRRs recognize specific pathogen-associated molecular patterns and as such are crucial for the activation of the immune system. Currently, five different classes of PRRs have been described: Toll-like receptors, C-type lectin receptors, nucleotide-binding oligomerization domain-like receptors, retinoic acid-inducible gene I-like receptors and absent in melanoma 2-like receptors. Following their discovery, many sequence variants in PRR genes have been uncovered and shown to be implicated in human infectious diseases. In this review, we will discuss the effect of genetic variation in PRRs and their signaling pathways on susceptibility to infectious diseases in humans.


Asunto(s)
Enfermedades Transmisibles/genética , Enfermedades Transmisibles/inmunología , Predisposición Genética a la Enfermedad , Variación Genética , Receptores de Reconocimiento de Patrones/genética , Humanos , Inmunidad Innata , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA