Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Int J Cancer ; 136(5): E219-29, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25137150

RESUMEN

Multiple myeloma (MM) is a B lymphocyte malignancy that remains incurable despite extensive research efforts. This is due, in part, to frequent disease recurrences associated with the persistence of myeloma cancer stem cells (mCSCs). Bone marrow mesenchymal stromal cells (BMSCs) play critical roles in supporting mCSCs through genetic or biochemical alterations. Previously, we identified mechanical distinctions between BMSCs isolated from MM patients (mBMSCs) and those present in the BM of healthy individuals (nBMSCs). These properties of mBMSC contributed to their ability to preferentially support mCSCs. To further illustrate mechanisms underlying the differences between mBMSCs and nBMSCs, here we report that (i) mBMSCs express an abnormal, constitutively high level of phosphorylated Myosin II, which leads to stiffer membrane mechanics, (ii) mBMSCs are more sensitive to SDF-1α-induced activation of MYL2 through the G(i./o)-PI3K-RhoA-ROCK-Myosin II signaling pathway, affecting Young's modulus in BMSCs and (iii) activated Myosin II confers increased cell contractile potential, leading to enhanced collagen matrix remodeling and promoting the cell-cell interaction between mCSCs and mBMSCs. Together, our findings suggest that interfering with SDF-1α signaling may serve as a new therapeutic approach for eliminating mCSCs by disrupting their interaction with mBMSCs.


Asunto(s)
Médula Ósea/patología , Quimiocina CXCL12/metabolismo , Células Madre Mesenquimatosas/patología , Mieloma Múltiple/patología , Miosina Tipo II/metabolismo , Quinasas Asociadas a rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Western Blotting , Médula Ósea/metabolismo , Estudios de Casos y Controles , Adhesión Celular , Proliferación Celular , Femenino , Humanos , Masculino , Células Madre Mesenquimatosas/metabolismo , Persona de Mediana Edad , Mieloma Múltiple/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Transducción de Señal , Células Tumorales Cultivadas
2.
Anal Bioanal Chem ; 405(6): 1985-93, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23239182

RESUMEN

The immobilization of proteins on nanopatterned surfaces was investigated using in situ atomic force microscopy (AFM) and ex situ infrared reflectance-absorption spectroscopy (IRAS). The AFM-based lithography technique of nanografting provided control of the size, geometry, and spatial placement of nanopatterns within self-assembled monolayers (SAMs). Square nanopatterns of carboxylate-terminated SAMs were inscribed within methyl-terminated octadecanethiolate SAMs and activated using carbodiimide/succinimide coupling chemistry. Staphylococcal protein A was immobilized on the activated nanopatterns before exposure to rabbit immunoglobulin G. In situ AFM was used to monitor changes in the topography and friction of the nanopatterns in solution upon protein immobilization. Complementary studies with ex situ IRAS confirmed the surface chemistry that occurred during the steps of SAM activation and subsequent protein immobilization on unpatterned samples. Since carbodiimide/succinimide coupling chemistry can be used for surface attachment of different biomolecules, this protocol shows promise for development of other aqueous-based studies for nanopatterned protein immobilization.


Asunto(s)
Ácidos Carboxílicos/química , Proteínas Inmovilizadas/química , Nanoestructuras/química , Proteína Estafilocócica A/química , Animales , Reactivos de Enlaces Cruzados/química , Inmunoglobulina G/química , Microscopía de Fuerza Atómica , Nanoestructuras/ultraestructura , Conejos , Análisis Espectral , Staphylococcus aureus/química , Propiedades de Superficie
3.
Biomed Microdevices ; 12(5): 855-63, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20574820

RESUMEN

It has been demonstrated that a chimeric antigen receptor (CAR) can directly recognize the CD19 molecule expressed on the cell surface of B-cell malignancies independent of major histocompatibility complex (MHC). Although T-cell therapy of tumors using CD19-specific CAR is promising, this approach relies on using expression vectors that stably integrate the CAR into T-cell chromosomes. To circumvent the potential genotoxicity that may occur from expressing integrating transgenes, we have expressed the CD19-specific CAR transgene from mRNA using a high throughput microelectroporation device. This research was accomplished using a microelectroporator to achieve efficient and high throughput non-viral gene transfer of in vitro transcribed CAR mRNA into human T cells that had been numerically expanded ex vivo. Electro-transfer of mRNA avoids the potential genotoxicity associated with vector and transgene integration and the high throughput capacity overcomes the expected transient CAR expression, as repeated rounds of electroporation can replace T cells that have lost transgene expression. We fabricated and tested a high throughput microelectroporator that can electroporate a stream of 2 x 10(8) primary T cells within 10 min. After electroporation, up to 80% of the passaged T cells expressed the CD19-specific CAR. Video time-lapse microscopy (VTLM) demonstrated the redirected effector function of the genetically manipulated T cells to specifically lyse CD19+ tumor cells. Our biomedical microdevice, in which T cells are transiently and safely modified to be tumor-specific and then can be re-infused, offers a method for redirecting T-cell specificity, that has implications for the development of adoptive immunotherapy.


Asunto(s)
Electroporación/instrumentación , Receptores de Antígenos/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Linfocitos T/inmunología , Células Presentadoras de Antígenos/citología , Células Presentadoras de Antígenos/inmunología , Antígenos CD19/metabolismo , Línea Celular Tumoral , Proliferación Celular , Humanos , ARN Mensajero/genética , Receptores de Antígenos/genética , Receptores de Antígenos/inmunología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Linfocitos T/citología
4.
Nat Nanotechnol ; 5(4): 291-6, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20228788

RESUMEN

Cell culture is an essential tool in drug discovery, tissue engineering and stem cell research. Conventional tissue culture produces two-dimensional cell growth with gene expression, signalling and morphology that can be different from those found in vivo, and this compromises its clinical relevance. Here, we report a three-dimensional tissue culture based on magnetic levitation of cells in the presence of a hydrogel consisting of gold, magnetic iron oxide nanoparticles and filamentous bacteriophage. By spatially controlling the magnetic field, the geometry of the cell mass can be manipulated, and multicellular clustering of different cell types in co-culture can be achieved. Magnetically levitated human glioblastoma cells showed similar protein expression profiles to those observed in human tumour xenografts. Taken together, these results indicate that levitated three-dimensional culture with magnetized phage-based hydrogels more closely recapitulates in vivo protein expression and may be more feasible for long-term multicellular studies.


Asunto(s)
Óxido Ferrosoférrico/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Magnetismo/métodos , Técnicas de Cultivo de Tejidos/métodos , Astrocitos , Línea Celular Tumoral , Glioblastoma , Oro/química , Humanos , Inovirus/química , Microscopía Fluorescente , Proteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA