Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 592(7852): 122-127, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33636719

RESUMEN

During the evolution of SARS-CoV-2 in humans, a D614G substitution in the spike glycoprotein (S) has emerged; virus containing this substitution has become the predominant circulating variant in the COVID-19 pandemic1. However, whether the increasing prevalence of this variant reflects a fitness advantage that improves replication and/or transmission in humans or is merely due to founder effects remains unknown. Here we use isogenic SARS-CoV-2 variants to demonstrate that the variant that contains S(D614G) has enhanced binding to the human cell-surface receptor angiotensin-converting enzyme 2 (ACE2), increased replication in primary human bronchial and nasal airway epithelial cultures as well as in a human ACE2 knock-in mouse model, and markedly increased replication and transmissibility in hamster and ferret models of SARS-CoV-2 infection. Our data show that the D614G substitution in S results in subtle increases in binding and replication in vitro, and provides a real competitive advantage in vivo-particularly during the transmission bottleneck. Our data therefore provide an explanation for the global predominance of the variant that contains S(D614G) among the SARS-CoV-2 viruses that are currently circulating.


Asunto(s)
COVID-19/transmisión , COVID-19/virología , Mutación , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/genética , Replicación Viral/genética , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Bronquios/citología , Bronquios/virología , COVID-19/epidemiología , Línea Celular , Células Cultivadas , Cricetinae , Modelos Animales de Enfermedad , Células Epiteliales/virología , Femenino , Hurones/virología , Efecto Fundador , Técnicas de Sustitución del Gen , Aptitud Genética , Humanos , Masculino , Mesocricetus , Ratones , Mucosa Nasal/citología , Mucosa Nasal/virología , Unión Proteica , ARN Viral/análisis , Receptores de Coronavirus/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad
2.
PLoS Pathog ; 20(4): e1012131, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38626244

RESUMEN

Patterns of within-host influenza A virus (IAV) diversity and evolution have been described in natural human infections, but these patterns remain poorly characterized in non-human hosts. Elucidating these dynamics is important to better understand IAV biology and the evolutionary processes that govern spillover into humans. Here, we sampled an IAV outbreak in pigs during a week-long county fair to characterize viral diversity and evolution in this important reservoir host. Nasal wipes were collected on a daily basis from all pigs present at the fair, yielding up to 421 samples per day. Subtyping of PCR-positive samples revealed the co-circulation of H1N1 and H3N2 subtype swine IAVs. PCR-positive samples with robust Ct values were deep-sequenced, yielding 506 sequenced samples from a total of 253 pigs. Based on higher-depth re-sequenced data from a subset of these initially sequenced samples (260 samples from 168 pigs), we characterized patterns of within-host IAV genetic diversity and evolution. We find that IAV genetic diversity in single-subtype infected pigs is low, with the majority of intrahost Single Nucleotide Variants (iSNVs) present at frequencies of <10%. The ratio of the number of nonsynonymous to the number of synonymous iSNVs is significantly lower than under the neutral expectation, indicating that purifying selection shapes patterns of within-host viral diversity in swine. The dynamic turnover of iSNVs and their pronounced frequency changes further indicate that genetic drift also plays an important role in shaping IAV populations within pigs. Taken together, our results highlight similarities in patterns of IAV genetic diversity and evolution between humans and swine, including the role of stochastic processes in shaping within-host IAV dynamics.


Asunto(s)
Flujo Genético , Infecciones por Orthomyxoviridae , Enfermedades de los Porcinos , Animales , Porcinos , Infecciones por Orthomyxoviridae/virología , Enfermedades de los Porcinos/virología , Subtipo H3N2 del Virus de la Influenza A/genética , Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/genética , Variación Genética , Evolución Molecular , Selección Genética , Filogenia
3.
Mol Biol Rep ; 50(10): 8639-8651, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37535245

RESUMEN

Extracellular vesicles (EVs) theranostic potential is under intense investigation. There is a wealth of information highlighting the role that EVs and the secretome play in disease and how these are being utilized for clinical trials and novel therapeutic possibilities. However, understanding of the physiological and pathological roles of EVs remain incomplete. The challenge lies in reaching a consensus concerning standardized quality-controlled isolation, storage, and sample preparation parameters. Interest in circulating EV cargo as diagnostic and prognostic biomarkers is steadily growing. Though promising, various limitations need to be addressed before there can be successful, full-scale therapeutic use of approved EVs. These limitations include obtaining or manufacturing from the appropriate medium (e.g., from bodily fluid or cell culture), loading and isolating EVs, stability, and storage, standardization of processing, and determining potency. This review highlights specific topics, including circulation of abnormal EVs contribute to human disease and the theranostic potential of EVs. Theranostics is defined as a combination of the word's therapeutics and diagnostics and describes how a specific medicine or technique can function as both. Key findings include, (1) EVs and the secretome are future theranostics which will be utilized as both biomarkers for diagnosis and as therapeutics, (2) basic and translational research supports clinical trials utilizing EVs/secretome, and (3) additional investigation is required to fully unmask the theranostic potential of EVs/secretome in specific diseases and injuries.


Asunto(s)
Vesículas Extracelulares , Humanos , Biomarcadores , Medicina de Precisión , Comunicación Celular , Técnicas de Cultivo de Célula
4.
Health Qual Life Outcomes ; 21(1): 37, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37098588

RESUMEN

BACKGROUND: Quality of life questionnaires are often used in the assessment of rehabilitation of hearing-impaired patients with a cochlear implant. However, a prospective study with a systematic retrospective evaluation of the preoperative quality of life after surgery has not yet been conducted and may reveal a change in internal standards, such as a response shift, due to the implantation and hearing rehabilitation. METHODS: The Nijmegen Cochlear Implant Questionnaire (NCIQ) was used for assessing hearing related quality of life. It has three general domains (physical, psychological and social) and six subdomains. Seventeen patients were tested before (t0) and retrospectively (then-test; pre-t1) and acutely postoperative (post-t1) after cochlear implantation. Observed changes, then-test changes, response shifts and effect sizes were calculated. Non-parametric statistical methods were used. RESULTS: The NCIQ total score was 52.32 ± 18.69 (mean, standard deviation) for t0, 59.29 ± 14.06 for pre-t1 and 67.65 ± 26.02 for post-t1 questioning. The observed change was statistically significant in all domains but in speech production. Response shift was statistically significant in the total score and in part of the domains. The effect sizes for the response shift were moderate (> 0.5) in the total score, psychological, social general scores and subdomains. CONCLUSIONS: In this study we found that response shift does exist in adults with severe to profound hearing loss undergoing cochlear implantation. By advising the participants to deactivate the implant for the then-test, recall bias and noise were minimized. The clinical significance of the response shift was present in the total score and in the social and psychological domains. TRIAL REGISTRATION: This study was retrospectively registered with the German Clinical Trial Register, TRN DRKS00029467, on 07/08/2022.


Asunto(s)
Implantación Coclear , Adulto , Humanos , Implantación Coclear/métodos , Implantación Coclear/psicología , Estudios Prospectivos , Calidad de Vida , Estudios Retrospectivos , Audición , Encuestas y Cuestionarios , Resultado del Tratamiento
5.
BMC Neurosci ; 23(1): 73, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36474149

RESUMEN

In the military, constant physiological and psychological stress encountered by Soldiers can lead to development of the combat and operational stress reaction (COSR), which can effect pain management. Similar effects are seen in other populations subjected to high levels of stress. Using a model of COSR, our lab recently showed that four weeks of stress prior to an injury increases pain sensitivity in male rats. With the roles of women in the military expanding and recent studies indicating sex differences in stress and pain processing, this study sought to investigate how different amounts of prior stress exposure affects thermal injury-induced mechanosensitivity in a female rat model of COSR. Adult female Sprague Dawley rats were exposed to the unpredictable combat stress (UPCS) procedure for either 2 or 4 weeks. The UPCS procedure included exposure to one stressor each day for four days. The stressors include: (1) sound stress for 30 min, (2) restraint stress for 4 h, (3) cold stress for 4 h, and (4) forced swim stress for 15 min. The order of stressors was randomized weekly. Mechanical and thermal sensitivity was tested twice weekly. After the UPCS procedure, a sub-set of rats received a thermal injury while under anesthesia. The development of mechanical allodynia and thermal hyperalgesia was examined for 14 days post-burn. UPCS exposure increased mechanosensitivity after two weeks. Interestingly, with more stress exposure, females seemed to habituate to the stress, causing the stress-induced changes in mechanosensitivity to decrease by week three of UPCS. If thermal injury induction occurred during peak stress-induced mechanosensitivity, after two weeks, this resulted in increased mechanical allodynia in the injured hind paw compared to thermal injury alone. This data indicates a susceptibility to increased nociceptive sensitization when injury is sustained at peak stress reactivity. Additionally, this data indicates a sex difference in the timing of peak stress. Post-mortem examination of the prefrontal cortex (PFC) showed altered expression of p-TrkB in 4-week stressed animals given a thermal injury, suggesting a compensatory mechanism. Future work will examine treatment options for preventing stress-induced pain to maintain the effectiveness and readiness of the Warfighter.


Asunto(s)
Dolor , Roedores , Femenino , Masculino , Ratas , Animales , Ratas Sprague-Dawley , Autopsia , Dolor/etiología
6.
MMWR Morb Mortal Wkly Rep ; 71(10): 365-370, 2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35271561

RESUMEN

In the United States, annual vaccination against seasonal influenza is recommended for all persons aged ≥6 months except when contraindicated (1). Currently available influenza vaccines are designed to protect against four influenza viruses: A(H1N1)pdm09 (the 2009 pandemic virus), A(H3N2), B/Victoria lineage, and B/Yamagata lineage. Most influenza viruses detected this season have been A(H3N2) (2). With the exception of the 2020-21 season, when data were insufficient to generate an estimate, CDC has estimated the effectiveness of seasonal influenza vaccine at preventing laboratory-confirmed, mild/moderate (outpatient) medically attended acute respiratory infection (ARI) each season since 2004-05. This interim report uses data from 3,636 children and adults with ARI enrolled in the U.S. Influenza Vaccine Effectiveness Network during October 4, 2021-February 12, 2022. Overall, vaccine effectiveness (VE) against medically attended outpatient ARI associated with influenza A(H3N2) virus was 16% (95% CI = -16% to 39%), which is considered not statistically significant. This analysis indicates that influenza vaccination did not reduce the risk for outpatient medically attended illness with influenza A(H3N2) viruses that predominated so far this season. Enrollment was insufficient to generate reliable VE estimates by age group or by type of influenza vaccine product (1). CDC recommends influenza antiviral medications as an adjunct to vaccination; the potential public health benefit of antiviral medications is magnified in the context of reduced influenza VE. CDC routinely recommends that health care providers continue to administer influenza vaccine to persons aged ≥6 months as long as influenza viruses are circulating, even when VE against one virus is reduced, because vaccine can prevent serious outcomes (e.g., hospitalization, intensive care unit (ICU) admission, or death) that are associated with influenza A(H3N2) virus infection and might protect against other influenza viruses that could circulate later in the season.


Asunto(s)
Subtipo H3N2 del Virus de la Influenza A/inmunología , Virus de la Influenza A/inmunología , Vacunas contra la Influenza/administración & dosificación , Gripe Humana/prevención & control , Eficacia de las Vacunas , Adolescente , Adulto , Anciano , Niño , Preescolar , Humanos , Lactante , Subtipo H1N1 del Virus de la Influenza A/inmunología , Virus de la Influenza B/inmunología , Persona de Mediana Edad , Vigilancia de la Población , Estaciones del Año , Estados Unidos/epidemiología , Vacunación
7.
MMWR Morb Mortal Wkly Rep ; 71(29): 913-919, 2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35862284

RESUMEN

Before the emergence of SARS-CoV-2, the virus that causes COVID-19, influenza activity in the United States typically began to increase in the fall and peaked in February. During the 2021-22 season, influenza activity began to increase in November and remained elevated until mid-June, featuring two distinct waves, with A(H3N2) viruses predominating for the entire season. This report summarizes influenza activity during October 3, 2021-June 11, 2022, in the United States and describes the composition of the Northern Hemisphere 2022-23 influenza vaccine. Although influenza activity is decreasing and circulation during summer is typically low, remaining vigilant for influenza infections, performing testing for seasonal influenza viruses, and monitoring for novel influenza A virus infections are important. An outbreak of highly pathogenic avian influenza A(H5N1) is ongoing; health care providers and persons with exposure to sick or infected birds should remain vigilant for onset of symptoms consistent with influenza. Receiving a seasonal influenza vaccine each year remains the best way to protect against seasonal influenza and its potentially severe consequences.


Asunto(s)
COVID-19 , Subtipo H5N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Humanos , Subtipo H3N2 del Virus de la Influenza A/genética , Virus de la Influenza B/genética , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Vigilancia de la Población , SARS-CoV-2 , Estaciones del Año , Estados Unidos/epidemiología
8.
MMWR Morb Mortal Wkly Rep ; 71(6): 206-211, 2022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-35143464

RESUMEN

Genomic surveillance is a critical tool for tracking emerging variants of SARS-CoV-2 (the virus that causes COVID-19), which can exhibit characteristics that potentially affect public health and clinical interventions, including increased transmissibility, illness severity, and capacity for immune escape. During June 2021-January 2022, CDC expanded genomic surveillance data sources to incorporate sequence data from public repositories to produce weighted estimates of variant proportions at the jurisdiction level and refined analytic methods to enhance the timeliness and accuracy of national and regional variant proportion estimates. These changes also allowed for more comprehensive variant proportion estimation at the jurisdictional level (i.e., U.S. state, district, territory, and freely associated state). The data in this report are a summary of findings of recent proportions of circulating variants that are updated weekly on CDC's COVID Data Tracker website to enable timely public health action.† The SARS-CoV-2 Delta (B.1.617.2 and AY sublineages) variant rose from 1% to >50% of viral lineages circulating nationally during 8 weeks, from May 1-June 26, 2021. Delta-associated infections remained predominant until being rapidly overtaken by infections associated with the Omicron (B.1.1.529 and BA sublineages) variant in December 2021, when Omicron increased from 1% to >50% of circulating viral lineages during a 2-week period. As of the week ending January 22, 2022, Omicron was estimated to account for 99.2% (95% CI = 99.0%-99.5%) of SARS-CoV-2 infections nationwide, and Delta for 0.7% (95% CI = 0.5%-1.0%). The dynamic landscape of SARS-CoV-2 variants in 2021, including Delta- and Omicron-driven resurgences of SARS-CoV-2 transmission across the United States, underscores the importance of robust genomic surveillance efforts to inform public health planning and practice.


Asunto(s)
COVID-19/epidemiología , COVID-19/virología , SARS-CoV-2/genética , Centers for Disease Control and Prevention, U.S. , Genómica , Humanos , Prevalencia , Vigilancia en Salud Pública/métodos , Estados Unidos/epidemiología
9.
PLoS Genet ; 15(3): e1007948, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30870413

RESUMEN

Glial cells regulate multiple aspects of synaptogenesis. In the absence of Schwann cells, a peripheral glial cell, motor neurons initially innervate muscle but then degenerate. Here, using a genetic approach, we show that neural activity-regulated negative factors produced by muscle drive neurodegeneration in Schwann cell-deficient mice. We find that thrombin, the hepatic serine protease central to the hemostatic coagulation cascade, is one such negative factor. Trancriptomic analysis shows that expression of the antithrombins serpin C1 and D1 is significantly reduced in Schwann cell-deficient mice. In the absence of peripheral neuromuscular activity, neurodegeneration is completely blocked, and expression of prothrombin in muscle is markedly reduced. In the absence of muscle-derived prothrombin, neurodegeneration is also markedly reduced. Together, these results suggest that Schwann cells regulate NMJs by opposing the effects of activity-regulated, muscle-derived negative factors and provide the first genetic evidence that thrombin plays a central role outside of the coagulation system.


Asunto(s)
Antitrombina III/genética , Cofactor II de Heparina/genética , Unión Neuromuscular/genética , Protrombina/genética , Sinapsis/genética , Animales , Perfilación de la Expresión Génica , Ratones , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Músculo Esquelético/metabolismo , Degeneración Nerviosa/genética , Neuroglía , Unión Neuromuscular/crecimiento & desarrollo , Células de Schwann/metabolismo , Trombina/genética
10.
Clin Infect Dis ; 73(11): e4244-e4250, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-33367650

RESUMEN

BACKGROUND: At the start of the 2019-2020 influenza season, concern arose that circulating B/Victoria viruses of the globally emerging clade V1A.3 were antigenically drifted from the strain included in the vaccine. Intense B/Victoria activity was followed by circulation of genetically diverse A(H1N1)pdm09 viruses that were also antigenically drifted. We measured vaccine effectiveness (VE) in the United States against illness from these emerging viruses. METHODS: We enrolled outpatients aged ≥6 months with acute respiratory illness at 5 sites. Respiratory specimens were tested for influenza by reverse-transcriptase polymerase chain reaction (RT-PCR). Using the test-negative design, we determined influenza VE by virus subtype/lineage and genetic subclades by comparing odds of vaccination in influenza cases versus test-negative controls. RESULTS: Among 8845 enrollees, 2722 (31%) tested positive for influenza, including 1209 (44%) for B/Victoria and 1405 (51%) for A(H1N1)pdm09. Effectiveness against any influenza illness was 39% (95% confidence interval [CI]: 32-44), 45% (95% CI: 37-52) against B/Victoria and 30% (95% CI: 21-39) against A(H1N1)pdm09-associated illness. Vaccination offered no protection against A(H1N1)pdm09 viruses with antigenically drifted clade 6B.1A 183P-5A+156K HA genes (VE 7%; 95% CI: -14 to 23%) which predominated after January. CONCLUSIONS: Vaccination provided protection against influenza illness, mainly due to infections from B/Victoria viruses. Vaccine protection against illness from A(H1N1)pdm09 was lower than historically observed effectiveness of 40%-60%, due to late-season vaccine mismatch following emergence of antigenically drifted viruses. The effect of drift on vaccine protection is not easy to predict and, even in drifted years, significant protection can be observed.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Deriva y Cambio Antigénico , Humanos , Lactante , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A , Virus de la Influenza B , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Estaciones del Año , Estados Unidos/epidemiología , Vacunación , Eficacia de las Vacunas
11.
J Virol ; 95(2)2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33115872

RESUMEN

Human-to-swine transmission of seasonal influenza viruses has led to sustained human-like influenza viruses circulating in the U.S. swine population. While some reverse zoonotic-origin viruses adapt and become enzootic in swine, nascent reverse zoonoses may result in virus detections that are difficult to classify as "swine-origin" or "human-origin" due to the genetic similarity of circulating viruses. This is the case for human-origin influenza A(H1N1) pandemic 2009 (pdm09) viruses detected in pigs following numerous reverse zoonosis events since the 2009 pandemic. We report the identification of two human infections with A(H1N1)pdm09 viruses originating from swine hosts and classify them as "swine-origin" variant influenza viruses based on phylogenetic analysis and sequence comparison methods. Phylogenetic analyses of viral genomes from two cases revealed these viruses were reassortants containing A(H1N1)pdm09 hemagglutinin (HA) and neuraminidase (NA) genes with genetic combinations derived from the triple reassortant internal gene cassette. Follow-up investigations determined that one individual had direct exposure to swine in the week preceding illness onset, while another did not report swine exposure. The swine-origin A(H1N1) variant cases were resolved by full genome sequence comparison of the variant viruses to swine influenza genomes. However, if reassortment does not result in the acquisition of swine-associated genes and swine virus genomic sequences are not available from the exposure source, future cases may not be discernible. We have developed a pipeline that performs maximum likelihood analyses, a k-mer-based set difference algorithm, and random forest algorithms to identify swine-associated sequences in the hemagglutinin gene to differentiate between human-origin and swine-origin A(H1N1)pdm09 viruses.IMPORTANCE Influenza virus infects a wide range of hosts, resulting in illnesses that vary from asymptomatic cases to severe pneumonia and death. Viral transfer can occur between human and nonhuman hosts, resulting in human and nonhuman origin viruses circulating in novel hosts. In this work, we have identified the first case of a swine-origin influenza A(H1N1)pdm09 virus resulting in a human infection. This shows that these viruses not only circulate in swine hosts, but are continuing to evolve and distinguish themselves from previously circulating human-origin influenza viruses. The development of techniques for distinguishing human-origin and swine-origin viruses are necessary for the continued surveillance of influenza viruses. We show that unique genetic signatures can differentiate circulating swine-associated strains from circulating human-associated strains of influenza A(H1N1)pdm09, and these signatures can be used to enhance surveillance of swine-origin influenza.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Gripe Humana/virología , Infecciones por Orthomyxoviridae/virología , Pandemias/veterinaria , Zoonosis/virología , Adulto , Anciano , Animales , Perros , Femenino , Genoma Viral/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Subtipo H1N1 del Virus de la Influenza A/clasificación , Subtipo H1N1 del Virus de la Influenza A/genética , Gripe Humana/transmisión , Células de Riñón Canino Madin Darby , Masculino , Neuraminidasa/genética , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/transmisión , Filogenia , Virus Reordenados/clasificación , Virus Reordenados/genética , Virus Reordenados/aislamiento & purificación , Porcinos , Proteínas Virales/genética , Zoonosis/transmisión
12.
Sensors (Basel) ; 21(18)2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34577459

RESUMEN

An improved apparatus for measuring the spectral directional emissivity in the wavelength range between 1 µm and 20 µm at temperatures up to 2400 K is presented in this paper. As a heating unit an inductor is used to warm up the specimen, as well as the blackbody reference to the specified temperatures. The heating unit is placed in a double-walled vacuum vessel. A defined temperature, as well as a homogenous temperature distribution of the whole surrounding is ensured by a heat transfer fluid flowing through the gap of the double-walled vessel. Additionally, the surrounding is coated with a high-emitting paint and serves as blackbody-like surrounding to ensure defined boundary conditions. For measuring the spectral directional emissivity at different emission angles, a movable mirror is installed in front of the specimen, which can be adjusted by a rotatable arrangement guiding the emitted radiation into the attached FTIR-spectrometer. The setup of the emissivity measurement apparatus (EMMA) and the measurement procedure are introduced, and the derived measurement results are presented. For evaluating the apparatus, measurements were performed on different materials. The determined emissivities agree well with values published in literature within the derived relative uncertainties below 4% for most wavelengths.

13.
J Infect Dis ; 221(1): 8-15, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31665373

RESUMEN

BACKGROUND: Increased illness due to antigenically drifted A(H3N2) clade 3C.3a influenza viruses prompted concerns about vaccine effectiveness (VE) and vaccine strain selection. We used US virologic surveillance and US Influenza Vaccine Effectiveness (Flu VE) Network data to evaluate consequences of this clade. METHODS: Distribution of influenza viruses was described using virologic surveillance data. The Flu VE Network enrolled ambulatory care patients aged ≥6 months with acute respiratory illness at 5 sites. Respiratory specimens were tested for influenza by means of reverse-transcriptase polymerase chain reaction and were sequenced. Using a test-negative design, we estimated VE, comparing the odds of influenza among vaccinated versus unvaccinated participants. RESULTS: During the 2018-2019 influenza season, A(H3N2) clade 3C.3a viruses caused an increasing proportion of influenza cases. Among 2763 Flu VE Network case patients, 1325 (48%) were infected with A(H1N1)pdm09 and 1350 (49%) with A(H3N2); clade 3C.3a accounted for 977 (93%) of 1054 sequenced A(H3N2) viruses. VE was 44% (95% confidence interval, 37%-51%) against A(H1N1)pdm09 and 9% (-4% to 20%) against A(H3N2); VE was 5% (-10% to 19%) against A(H3N2) clade 3C.3a viruses. CONCLUSIONS: The predominance of A(H3N2) clade 3C.3a viruses during the latter part of the 2018-2019 season was associated with decreased VE, supporting the A(H3N2) vaccine component update for 2019-2020 northern hemisphere influenza vaccines.


Asunto(s)
Variación Antigénica , Subtipo H1N1 del Virus de la Influenza A , Subtipo H3N2 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Adolescente , Adulto , Anciano , Niño , Preescolar , Femenino , Humanos , Lactante , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Gripe Humana/virología , Masculino , Persona de Mediana Edad , Nariz/virología , Orofaringe/virología , Vigilancia de la Población , ARN Viral/análisis , Estados Unidos/epidemiología , Vacunación , Adulto Joven
14.
J Virol ; 93(1)2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30305359

RESUMEN

The fifth wave of the H7N9 influenza epidemic in China was distinguished by a sudden increase in human infections, an extended geographic distribution, and the emergence of highly pathogenic avian influenza (HPAI) viruses. Genetically, some H7N9 viruses from the fifth wave have acquired novel amino acid changes at positions involved in mammalian adaptation, antigenicity, and hemagglutinin cleavability. Here, several human low-pathogenic avian influenza (LPAI) and HPAI H7N9 virus isolates from the fifth epidemic wave were assessed for their pathogenicity and transmissibility in mammalian models, as well as their ability to replicate in human airway epithelial cells. We found that an LPAI virus exhibited a similar capacity to replicate and cause disease in two animal species as viruses from previous waves. In contrast, HPAI H7N9 viruses possessed enhanced virulence, causing greater lethargy and mortality, with an extended tropism for brain tissues in both ferret and mouse models. These HPAI viruses also showed signs of adaptation to mammalian hosts by acquiring the ability to fuse at a lower pH threshold than other H7N9 viruses. All of the fifth-wave H7N9 viruses were able to transmit among cohoused ferrets but exhibited a limited capacity to transmit by respiratory droplets, and deep sequencing analysis revealed that the H7N9 viruses sampled after transmission showed a reduced amount of minor variants. Taken together, we conclude that the fifth-wave HPAI H7N9 viruses have gained the ability to cause enhanced disease in mammalian models and with further adaptation may acquire the ability to cause an H7N9 pandemic.IMPORTANCE The potential pandemic risk posed by avian influenza H7N9 viruses was heightened during the fifth epidemic wave in China due to the sudden increase in the number of human infections and the emergence of antigenically distinct LPAI and HPAI H7N9 viruses. In this study, a group of fifth-wave HPAI and LPAI viruses was evaluated for its ability to infect, cause disease, and transmit in small-animal models. The ability of HPAI H7N9 viruses to cause more severe disease and to replicate in brain tissues in animal models as well as their ability to fuse at a lower pH threshold than LPAI H7N9 viruses suggests that the fifth-wave H7N9 viruses have evolved to acquire novel traits with the potential to pose a higher risk to humans. Although the fifth-wave H7N9 viruses have not yet gained the ability to transmit efficiently by air, continuous surveillance and risk assessment remain essential parts of our pandemic preparedness efforts.


Asunto(s)
Subtipo H7N9 del Virus de la Influenza A/patogenicidad , Gripe Humana/virología , Infecciones por Orthomyxoviridae/epidemiología , ARN Viral/genética , Análisis de Secuencia de ARN/métodos , Animales , Línea Celular , China/epidemiología , Chlorocebus aethiops , Epidemias , Evolución Molecular , Hurones , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Subtipo H7N9 del Virus de la Influenza A/genética , Gripe Humana/epidemiología , Gripe Humana/transmisión , Ratones , Infecciones por Orthomyxoviridae/transmisión , Infecciones por Orthomyxoviridae/virología , Medición de Riesgo , Células Vero , Tropismo Viral , Virulencia
15.
MMWR Morb Mortal Wkly Rep ; 69(7): 177-182, 2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-32078591

RESUMEN

During the 2019-20 influenza season, influenza-like illness (ILI)* activity first exceeded the national baseline during the week ending November 9, 2019, signaling the earliest start to the influenza season since the 2009 influenza A(H1N1) pandemic. Activity remains elevated as of mid-February 2020. In the United States, annual vaccination against seasonal influenza is recommended for all persons aged ≥6 months (1). During each influenza season, CDC estimates seasonal influenza vaccine effectiveness in preventing laboratory-confirmed influenza associated with medically attended acute respiratory illness (ARI). This interim report used data from 4,112 children and adults enrolled in the U.S. Influenza Vaccine Effectiveness Network (U.S. Flu VE Network) during October 23, 2019-January 25, 2020. Overall, vaccine effectiveness (VE) against any influenza virus associated with medically attended ARI was 45% (95% confidence interval [CI] = 36%-53%). VE was estimated to be 50% (95% CI = 39%-59%) against influenza B/Victoria viruses and 37% (95% CI = 19%-52%) against influenza A(H1N1)pdm09, indicating that vaccine has significantly reduced medical visits associated with influenza so far this season. Notably, vaccination provided substantial protection (VE = 55%; 95% CI = 42%-65%) among children and adolescents aged 6 months-17 years. Interim VE estimates are consistent with those from previous seasons, ranging from 40%-60% when influenza vaccines were antigenically matched to circulating viruses. CDC recommends that health care providers continue to administer influenza vaccine to persons aged ≥6 months because influenza activity is ongoing, and the vaccine can still prevent illness, hospitalization, and death associated with currently circulating influenza viruses as well as other influenza viruses that might circulate later in the season.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , Virus de la Influenza B/aislamiento & purificación , Vacunas contra la Influenza/administración & dosificación , Gripe Humana/prevención & control , Vigilancia de la Población , Adolescente , Adulto , Anciano , Niño , Preescolar , Femenino , Humanos , Lactante , Vacunas contra la Influenza/inmunología , Gripe Humana/epidemiología , Gripe Humana/virología , Masculino , Persona de Mediana Edad , Estaciones del Año , Estados Unidos/epidemiología , Adulto Joven
16.
Mol Cell ; 48(2): 195-206, 2012 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-22959275

RESUMEN

LIN28 is a conserved RNA-binding protein implicated in pluripotency, reprogramming, and oncogenesis. It was previously shown to act primarily by blocking let-7 microRNA (miRNA) biogenesis, but here we elucidate distinct roles of LIN28 regulation via its direct messenger RNA (mRNA) targets. Through crosslinking and immunoprecipitation coupled with high-throughput sequencing (CLIP-seq) in human embryonic stem cells and somatic cells expressing exogenous LIN28, we have defined discrete LIN28-binding sites in a quarter of human transcripts. These sites revealed that LIN28 binds to GGAGA sequences enriched within loop structures in mRNAs, reminiscent of its interaction with let-7 miRNA precursors. Among LIN28 mRNA targets, we found evidence for LIN28 autoregulation and also direct but differing effects on the protein abundance of splicing regulators in somatic and pluripotent stem cells. Splicing-sensitive microarrays demonstrated that exogenous LIN28 expression causes widespread downstream alternative splicing changes. These findings identify important regulatory functions of LIN28 via direct mRNA interactions.


Asunto(s)
Empalme Alternativo/genética , ARN Mensajero , Proteínas de Unión al ARN , Sitios de Unión/genética , Células Madre Embrionarias , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Humanos , Motivos de Nucleótidos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
17.
J Virol ; 92(11)2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29540597

RESUMEN

Influenza A(H1) viruses circulating in swine represent an emerging virus threat, as zoonotic infections occur sporadically following exposure to swine. A fatal infection caused by an H1N1 variant (H1N1v) virus was detected in a patient with reported exposure to swine and who presented with pneumonia, respiratory failure, and cardiac arrest. To understand the genetic and phenotypic characteristics of the virus, genome sequence analysis, antigenic characterization, and ferret pathogenesis and transmissibility experiments were performed. Antigenic analysis of the virus isolated from the fatal case, A/Ohio/09/2015, demonstrated significant antigenic drift away from the classical swine H1N1 variant viruses and H1N1 pandemic 2009 viruses. A substitution in the H1 hemagglutinin (G155E) was identified that likely impacted antigenicity, and reverse genetics was employed to understand the molecular mechanism of antibody escape. Reversion of the substitution to 155G, in a reverse genetics A/Ohio/09/2015 virus, showed that this residue was central to the loss of hemagglutination inhibition by ferret antisera raised against a prototypical H1N1 pandemic 2009 virus (A/California/07/2009), as well as gamma lineage classical swine H1N1 viruses, demonstrating the importance of this residue for antibody recognition of this H1 lineage. When analyzed in the ferret model, A/Ohio/09/2015 and another H1N1v virus, A/Iowa/39/2015, as well as A/California/07/2009, replicated efficiently in the respiratory tract of ferrets. The two H1N1v viruses transmitted efficiently among cohoused ferrets, but respiratory droplet transmission studies showed that A/California/07/2009 transmitted through the air more efficiently. Preexisting immunity to A/California/07/2009 did not fully protect ferrets from challenge with A/Ohio/09/2015.IMPORTANCE Human infections with classical swine influenza A(H1N1) viruses that circulate in pigs continue to occur in the United States following exposure to swine. To understand the genetic and virologic characteristics of a virus (A/Ohio/09/2015) associated with a fatal infection and a virus associated with a nonfatal infection (A/Iowa/39/2015), we performed genome sequence analysis, antigenic testing, and pathogenicity and transmission studies in a ferret model. Reverse genetics was employed to identify a single antigenic site substitution (HA G155E) responsible for antigenic variation of A/Ohio/09/2015 compared to related classical swine influenza A(H1N1) viruses. Ferrets with preexisting immunity to the pandemic A(H1N1) virus were challenged with A/Ohio/09/2015, demonstrating decreased protection. These data illustrate the potential for currently circulating swine influenza viruses to infect and cause illness in humans with preexisting immunity to H1N1 pandemic 2009 viruses and a need for ongoing risk assessment and development of candidate vaccine viruses for improved pandemic preparedness.


Asunto(s)
Variación Antigénica/genética , Hurones/virología , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H1N1 del Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/transmisión , Infecciones por Orthomyxoviridae/veterinaria , Animales , Variación Antigénica/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Subtipo H1N1 del Virus de la Influenza A/clasificación , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/virología , Porcinos/virología , Enfermedades de los Porcinos/virología
18.
Nano Lett ; 18(5): 2802-2806, 2018 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-29683680

RESUMEN

The fabrication of metallic electromagnetic meta-atoms on a soft microstructured polymer scaffold using a MEMS-based stencil lithography technique is demonstrated. Using this technique, complex metasurfaces that are generally impossible to fabricate with traditional photolithographic techniques are created. By engineering the mechanical deformation of the polymer scaffold, the metasurface reflectivity in the mid-infrared can be tuned by the application of moderate strains.

19.
Emerg Infect Dis ; 23(12)2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29148400

RESUMEN

An outbreak of influenza A(H7N2) virus in cats in a shelter in New York, NY, USA, resulted in zoonotic transmission. Virus isolated from the infected human was closely related to virus isolated from a cat; both were related to low pathogenicity avian influenza A(H7N2) viruses detected in the United States during the early 2000s.


Asunto(s)
Enfermedades de los Gatos/epidemiología , Brotes de Enfermedades , Genoma Viral , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H7N2 del Virus de la Influenza A/genética , Gripe Aviar/epidemiología , Zoonosis/epidemiología , Animales , Antígenos Virales/química , Antígenos Virales/genética , Antígenos Virales/metabolismo , Sitios de Unión , Aves , Enfermedades de los Gatos/transmisión , Enfermedades de los Gatos/virología , Gatos , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Vivienda para Animales , Humanos , Subtipo H7N2 del Virus de la Influenza A/clasificación , Subtipo H7N2 del Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/transmisión , Gripe Aviar/virología , Modelos Moleculares , New York/epidemiología , Polisacáridos/química , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Receptores Virales/química , Receptores Virales/genética , Receptores Virales/metabolismo , Veterinarios , Zoonosis/transmisión , Zoonosis/virología
20.
J Clin Microbiol ; 55(12): 3492-3501, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28978683

RESUMEN

Influenza A and B viruses are the causative agents of annual influenza epidemics that can be severe, and influenza A viruses intermittently cause pandemics. Sequence information from influenza virus genomes is instrumental in determining mechanisms underpinning antigenic evolution and antiviral resistance. However, due to sequence diversity and the dynamics of influenza virus evolution, rapid and high-throughput sequencing of influenza viruses remains a challenge. We developed a single-reaction influenza A/B virus (FluA/B) multiplex reverse transcription-PCR (RT-PCR) method that amplifies the most critical genomic segments (hemagglutinin [HA], neuraminidase [NA], and matrix [M]) of seasonal influenza A and B viruses for next-generation sequencing, regardless of viral type, subtype, or lineage. Herein, we demonstrate that the strategy is highly sensitive and robust. The strategy was validated on thousands of seasonal influenza A and B virus-positive specimens using multiple next-generation sequencing platforms.


Asunto(s)
Virus de la Influenza A/clasificación , Virus de la Influenza A/aislamiento & purificación , Virus de la Influenza B/clasificación , Virus de la Influenza B/aislamiento & purificación , Gripe Humana/virología , Reacción en Cadena de la Polimerasa Multiplex/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Monitoreo Epidemiológico , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Virus de la Influenza A/genética , Virus de la Influenza B/genética , Epidemiología Molecular/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA