Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(10)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38791592

RESUMEN

In certain situations, bones do not heal completely after fracturing. One of these situations is a critical-size bone defect where the bone cannot heal spontaneously. In such a case, complex fracture treatment over a long period of time is required, which carries a relevant risk of complications. The common methods used, such as autologous and allogeneic grafts, do not always lead to successful treatment results. Current approaches to increasing bone formation to bridge the gap include the application of stem cells on the fracture side. While most studies investigated the use of mesenchymal stromal cells, less evidence exists about induced pluripotent stem cells (iPSC). In this study, we investigated the potential of mouse iPSC-loaded scaffolds and decellularized scaffolds containing extracellular matrix from iPSCs for treating critical-size bone defects in a mouse model. In vitro differentiation followed by Alizarin Red staining and quantitative reverse transcription polymerase chain reaction confirmed the osteogenic differentiation potential of the iPSCs lines. Subsequently, an in vivo trial using a mouse model (n = 12) for critical-size bone defect was conducted, in which a PLGA/aCaP osteoconductive scaffold was transplanted into the bone defect for 9 weeks. Three groups (each n = 4) were defined as (1) osteoconductive scaffold only (control), (2) iPSC-derived extracellular matrix seeded on a scaffold and (3) iPSC seeded on a scaffold. Micro-CT and histological analysis show that iPSCs grafted onto an osteoconductive scaffold followed by induction of osteogenic differentiation resulted in significantly higher bone volume 9 weeks after implantation than an osteoconductive scaffold alone. Transplantation of iPSC-seeded PLGA/aCaP scaffolds may improve bone regeneration in critical-size bone defects in mice.


Asunto(s)
Regeneración Ósea , Diferenciación Celular , Células Madre Pluripotentes Inducidas , Osteogénesis , Andamios del Tejido , Animales , Células Madre Pluripotentes Inducidas/citología , Andamios del Tejido/química , Ratones , Ingeniería de Tejidos/métodos , Masculino , Modelos Animales de Enfermedad , Matriz Extracelular
2.
Int J Mol Sci ; 24(8)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37108680

RESUMEN

In the past, our research group was able to successfully remove circulating tumor cells with magnetic nanoparticles. While these cancer cells are typically present in low numbers, we hypothesized that magnetic nanoparticles, besides catching single cells, are also capable of eliminating a large number of tumor cells from the blood ex vivo. This approach was tested in a small pilot study in blood samples of patients suffering from chronic lymphocytic leukemia (CLL), a mature B-cell neoplasm. Cluster of differentiation (CD) 52 is a ubiquitously expressed surface antigen on mature lymphocytes. Alemtuzumab (MabCampath®) is a humanized, IgG1κ, monoclonal antibody directed against CD52, which was formerly clinically approved for treating chronic lymphocytic leukemia (CLL) and therefore regarded as an ideal candidate for further tests to develop new treatment options. Alemtuzumab was bound onto carbon-coated cobalt nanoparticles. The particles were added to blood samples of CLL patients and finally removed, ideally with bound B lymphocytes, using a magnetic column. Flow cytometry quantified lymphocyte counts before, after the first, and after the second flow across the column. A mixed effects analysis was performed to evaluate removal efficiency. p < 0.05 was defined as significant. In the first patient cohort (n = 10), using a fixed nanoparticle concentration, CD19-positive B lymphocytes were reduced by 38% and by 53% after the first and the second purification steps (p = 0.002 and p = 0.005), respectively. In a second patient cohort (n = 11), the nanoparticle concentration was increased, and CD19-positive B lymphocytes were reduced by 44% (p < 0.001) with no further removal after the second purification step. In patients with a high lymphocyte count (>20 G/L), an improved efficiency of approximately 20% was observed using higher nanoparticle concentrations. A 40 to 50% reduction of B lymphocyte count using alemtuzumab-coupled carbon-coated cobalt nanoparticles is feasible, also in patients with a high lymphocyte count. A second purification step did not further increase removal. This proof-of-concept study demonstrates that such particles allow for the targeted extraction of larger amounts of cellular blood components and might offer new treatment options in the far future.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Nanopartículas de Magnetita , Humanos , Alemtuzumab/uso terapéutico , Proyectos Piloto , Antígenos CD , Antígeno CD52 , Anticuerpos Monoclonales Humanizados/uso terapéutico , Antígenos de Neoplasias , Glicoproteínas , Linfocitos , Carbono , Anticuerpos Antineoplásicos
3.
J Chem Educ ; 100(5): 1858-1865, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37552711

RESUMEN

The COVID-19 pandemic simultaneously disrupted supply chains and generated an urgent demand in medical infrastructure. Among personal protective equipment and ventilators, there was also an urgent demand for chemical oxygen. As devices to purify oxygen could not be manufactured and shipped rapidly enough, a simple and accessible oxygen concentrator based on pressure swing adsorption was developed at ETH Zurich in spring 2020. Instead of building devices locally and shipping them, it was decided to educate others in need of oxygen. The implementation encompassed education on process chemistry, material choice, and assembly and optimization of the concentrator and was realized using synchronous teaching tools, such as video call, and asynchronous ones, such as a website and video streaming. The project gained traction and interaction with engineering teams from universities and non-Governmental Organizations (Red Cross and the UN Development Program) in developing countries and emerging market economies, including Ecuador, Mexico, Somalia, and Peru. At the end of the project, the teams were surveyed regarding their experience in the educative knowledge transfer. It was reported that the learning experience prepared these groups well to build the device and to teach others as well. Major challenges were accessing some parts of the device and optimizing its performance. While synchronous communication is expected to be a very effective teaching method, the survey results showed that explanations via a website and video streaming have contributed the most to the implementation of the oxygen concentrator and thereby provide autonomous and sustainable education tools.

4.
Small ; 18(15): e2107381, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35218608

RESUMEN

Using DNA as a durable, high-density storage medium with eternal format relevance can address a future data storage deficiency. The proposed storage format incorporates dehydrated particle spots on glass, at a theoretical capacity of more than 20 TB per spot, which can be efficiently retrieved without significant loss of DNA. The authors measure the rapid decay of dried DNA at room temperature and present the synthesis of encapsulated DNA in silica nanoparticles as a possible solution. In this form, the protected DNA can be readily applied to digital microfluidics (DMF) used to handle retrieval operations amenable to full automation. A storage architecture is demonstrated, which can increase the storage capacity of today's archival storage systems by more than three orders of magnitude: A DNA library containing 7373 unique sequences is encapsulated and stored under accelerated aging conditions (4 days at 70 °C, 50% RH) corresponding to 116 years at room temperature and the stored information is successfully recovered.


Asunto(s)
ADN , Microfluídica , Vidrio , Almacenamiento y Recuperación de la Información , Temperatura
5.
Langmuir ; 38(37): 11191-11198, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36083165

RESUMEN

A core-shell strategy was developed to protect synthetic DNA in organosilica particles encompassing dithiol linkages allowing for a DNA loading of 1.1 wt %. DNA stability tests involving bleach as an oxidant showed that following the procedure DNA was sandwiched between core particles of ca. 450 nm size and a protective outer layer, separating the DNA from the environment. Rapid aging tests at 60 °C and 50% relative humidity revealed that the DNA protected within this material was significantly more stable than nonprotected DNA, with an expected ambient temperature half-life of over 60 years. Still, and due to the presence of the dithiol linkages in the backbone of the organosilica material, the particles degraded in the presence of reducing agents (TCEP and glutathione) and disintegrated within several days in a simulated compost environment, which was employed to test the biodegradability of the material. This is in contrast to DNA encapsulated following state of the art procedures in pure SiO2 particles, which do not biodegrade in the investigated timeframes and conditions. The results show that synthetic DNA protected within dithiol comprising organosilica particles presents a strategy to store digital data at a high storage capacity for long time frames in a fully biodegradable format.


Asunto(s)
Nanopartículas , Dióxido de Silicio , ADN/genética , Glutatión , Oxidantes , Sustancias Reductoras , Tolueno/análogos & derivados
6.
Indoor Air ; 32(1): e12945, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34676590

RESUMEN

Aerosolized particles play a significant role in human health and environmental risk management. The global importance of aerosol-related hazards, such as the circulation of pathogens and high levels of air pollutants, have led to a surging demand for suitable surrogate tracers to investigate the complex dynamics of airborne particles in real-world scenarios. In this study, we propose a novel approach using silica particles with encapsulated DNA (SPED) as a tracing agent for measuring aerosol distribution indoors. In a series of experiments with a portable setup, SPED were successfully aerosolized, recaptured, and quantified using quantitative polymerase chain reaction (qPCR). Position dependency and ventilation effects within a confined space could be shown in a quantitative fashion achieving detection limits below 0.1 ng particles per m3 of sampled air. In conclusion, SPED show promise for a flexible, cost-effective, and low-impact characterization of aerosol dynamics in a wide range of settings.


Asunto(s)
Contaminación del Aire Interior , Dióxido de Silicio , Aerosoles , ADN , Humanos , Ventilación
7.
Anal Chem ; 93(49): 16350-16359, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34852455

RESUMEN

The need for tools that facilitate rapid detection and continuous monitoring of SARS-CoV-2 variants of concern (VOCs) is greater than ever, as these variants are more transmissible and therefore increase the pressure of COVID-19 on healthcare systems. To address this demand, we aimed at developing and evaluating a robust and fast diagnostic approach for the identification of SARS-CoV-2 VOC-associated spike gene mutations. Our diagnostic assays detect the E484K and N501Y single-nucleotide polymorphisms (SNPs) as well as a spike gene deletion (HV69/70) and can be run on standard laboratory equipment or on the portable rapid diagnostic technology platform peakPCR. The assays achieved excellent diagnostic performance when tested with RNA extracted from culture-derived SARS-CoV-2 VOC lineages and clinical samples collected in Equatorial Guinea, Central-West Africa. Simplicity of usage and the relatively low cost are advantages that make our approach well suitable for decentralized and rapid testing, especially in resource-limited settings.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , COVID-19/virología , Prueba de Ácido Nucleico para COVID-19 , Guinea Ecuatorial/epidemiología , Eliminación de Gen , Humanos , Mutación , Polimorfismo de Nucleótido Simple , SARS-CoV-2/clasificación
8.
Chemistry ; 27(12): 4108-4114, 2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33350514

RESUMEN

The functionalization of magnetic nanoparticles has been an important field in the last decade due to the versatile applications in catalysis and biomedicine. Generally, a high degree of functionalities on the surface of the nanoparticles is desired. In this study, covalent functionalization of various aromatic sulfonic acids on carbon-coated cobalt nanoparticles are investigated on surface functionalization yield and stability. The nanoparticles are prepared via covalent linkage of an in situ generated diazonium on the graphene-like surface. Adsorption and wash experiments were performed to confirm a covalent bonding of the naphthalene derivatives on the nanoparticle surface. With an increased number of sulfonic acid groups on the aromatic compound a significantly lower loading is observed on the corresponding functionalized nanoparticles. This can be counteracted by a change of nitrite species. With this method, nanoparticles with a high number of sulfonic acid groups can be produced.

9.
Environ Sci Technol ; 55(10): 6867-6875, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33901401

RESUMEN

Environmental tracers are chemical species that move with a fluid and allow us to understand its origin and material transport properties. DNA-based materials have been proposed and used for tracing due to their potential for multitracing with high specificity and sensitivity. For large-scale applications of this new material it is of interest to understand its impact on the environment. We therefore assessed the ecotoxicity of sub-micron silica particles with and without encapsulated DNA in the context of surface and underground tracing of natural waterflows using standard ecotoxicity assays according to ISO standards. Acute toxicity tests were performed with Daphnia magna (48 h), showing no effect on mobility at tracer concentrations below 300 ppm. Chronic ecotoxicological potential was tested with Raphidocelis subcapitata (green algae) (72 h) and Ceriodaphnia species (7 d) with no effect observed at realistic exposure scenario concentrations for both silica particles with and without encapsulated DNA. These results suggest that large-scale environmental tracing with DNA-tagged silica particles in the given exposure scenarios has a low impact on aquatic species with low trophic levels such as select algae and planktonic crustaceans.


Asunto(s)
Dióxido de Silicio , Contaminantes Químicos del Agua , Animales , ADN , Daphnia , Ecotoxicología , Dióxido de Silicio/toxicidad , Contaminantes Químicos del Agua/toxicidad
10.
Int J Mol Sci ; 21(7)2020 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-32283864

RESUMEN

The microenvironment of mesenchymal stem cells (MSCs) is responsible for the modulation in MSC commitment. Nanocomposites with an inorganic and an organic component have been investigated, and osteogenesis of MSCs has been attributed to inorganic phases such as calcium phosphate under several conditions. Here, electrospun meshes and two-dimensional films of poly(lactic-co-glycolic acid) (PLGA) or nanocomposites of PLGA and amorphous calcium phosphate nanoparticles (PLGA/aCaP) seeded with human adipose-derived stem cells (ASCs) were analyzed for the expression of selected marker genes. In a two-week in vitro experiment, osteogenic commitment was not found to be favored on PLGA/aCaP compared to pure PLGA. Analysis of the medium revealed a significant reduction of the Ca2+ concentration when incubated with PLGA/aCaP, caused by chemical precipitation of hydroxyapatite (HAp) on aCaP seeds of PLGA/aCaP. Upon offering a constant Ca2+ concentration, however, the previously observed anti-osteogenic effect was reversed: alkaline phosphatase, an early osteogenic marker gene, was upregulated on PLGA/aCaP compared to pristine PLGA. Hence, in addition to the cell-material interaction, the material-medium interaction was also important for the stem cell commitment here, affecting the cell-medium interaction. Complex in vitro models should therefore consider all factors, as coupled impacts might emerge.


Asunto(s)
Fosfatos de Calcio , Nanopartículas , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Células Madre/citología , Andamios del Tejido , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Calcificación Fisiológica , Calcio/metabolismo , Calcio/farmacología , Fosfatos de Calcio/química , Técnicas de Cultivo de Célula , Diferenciación Celular , Células Cultivadas , Perfilación de la Expresión Génica , Humanos , Nanopartículas/química , Nanopartículas/ultraestructura , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Células Madre/ultraestructura , Andamios del Tejido/química , Transcriptoma
11.
Angew Chem Int Ed Engl ; 59(22): 8476-8480, 2020 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-32083389

RESUMEN

Today, we can read human genomes and store digital data robustly in synthetic DNA. Herein, we report a strategy to intertwine these two technologies to enable the secure storage of valuable information in synthetic DNA, protected with personalized keys. We show that genetic short tandem repeats (STRs) contain sufficient entropy to generate strong encryption keys, and that only one technology, DNA sequencing, is required to simultaneously read the key and the data. Using this approach, we experimentally generated 80 bit strong keys from human DNA, and used such a key to encrypt 17 kB of digital information stored in synthetic DNA. Finally, the decrypted information was recovered perfectly from a single massively parallel sequencing run.


Asunto(s)
Seguridad Computacional , ADN/genética , Genómica , Almacenamiento y Recuperación de la Información/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Repeticiones de Microsatélite/genética
12.
J Nanobiotechnology ; 17(1): 73, 2019 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-31151445

RESUMEN

Magnetic nanosensors have become attractive instruments for the diagnosis and treatment of different diseases. They represent an efficient carrier system in drug delivery or in transporting contrast agents. For such purposes, magnetic nanosensors are used in vivo (intracorporeal application). To remove specific compounds from blood, magnetic nanosensors act as elimination system, which represents an extracorporeal approach. This review discusses principles, advantages and risks on recent advances in the field of magnetic nanosensors. First, synthesis methods for magnetic nanosensors and possibilities for enhancement of biocompatibility with different coating materials are addressed. Then, attention is devoted to clinical applications, in which nanosensors are or may be used as carrier- and elimination systems in the near future. Finally, risk considerations and possible effects of nanomaterials are discussed when working towards clinical applications with magnetic nanosensors.


Asunto(s)
Técnicas Biosensibles/métodos , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas de Magnetita/química , Animales , Separación Celular , Medios de Contraste/administración & dosificación , Humanos , Hipertermia Inducida , Nanopartículas de Magnetita/efectos adversos
13.
Artif Organs ; 43(5): 467-477, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30357874

RESUMEN

Future left ventricular assist devices (LVADs) are expected to respond to the physiologic need of patients; however, they still lack reliable pressure or volume sensors for feedback control. In the clinic, echocardiography systems are routinely used to measure left ventricular (LV) volume. Until now, echocardiography in this form was never integrated in LVADs due to its computational complexity. The aim of this study was to demonstrate the applicability of a simplified ultrasonic sensor to fit an LVAD cannula and to show the achievable accuracy in vitro. Our approach requires only two ultrasonic transducers because we estimated the LV volume with the LV end-diastolic diameter commonly used in clinical assessments. In order to optimize the accuracy, we assessed the optimal design parameters considering over 50 orientations of the two ultrasonic transducers. A test bench was equipped with five talcum-infused silicone heart phantoms, in which the intra-ventricular surface replicated papillary muscles and trabeculae carnae. The end-diastolic LV filling volumes of the five heart phantoms ranged from 180 to 480 mL. This reference volume was altered by ±40 mL with a syringe pump. Based on the calibrated measurements acquired by the two ultrasonic transducers, the LV volume was estimated well. However, the accuracies obtained are strongly dependent on the choice of the design parameters. Orientations toward the septum perform better, as they interfere less with the papillary muscles. The optimized design is valid for all hearts. Considering this, the Bland-Altman analysis reports the LV volume accuracy as a bias of ±10% and limits of agreement of 0%-40% in all but the smallest heart. The simplicity of traditional echocardiography systems was reduced by two orders of magnitude in technical complexity, while achieving a comparable accuracy to 2D echocardiography requiring a calibration of absolute volume only. Hence, our approach exploits the established benefits of echocardiography and makes them applicable as an LV volume sensor for LVADs.


Asunto(s)
Ventrículos Cardíacos/anatomía & histología , Corazón Auxiliar , Corazón/anatomía & histología , Anciano , Anciano de 80 o más Años , Diástole , Ecocardiografía , Ecocardiografía Tridimensional , Ventrículos Cardíacos/diagnóstico por imagen , Humanos , Masculino , Persona de Mediana Edad , Modelos Anatómicos , Tamaño de los Órganos , Impresión Tridimensional , Volumen Sistólico , Ultrasonido , Función Ventricular
14.
Langmuir ; 34(1): 30-35, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29215894

RESUMEN

Monodisperse, nitrogen-doped hollow carbon spheres of submicron size were synthesized using hexamethoxymethylmelamine as both a carbon and nitrogen source in a short (1 h) microwave-assisted synthesis. After carbonization at 550 °C, porous carbon spheres with a remarkably high nitrogen content of 37.1% were obtained, which consisting mainly of highly basic pyridinic moieties. The synthesized hollow spheres exhibited high selectivity for carbon dioxide (CO2) over nitrogen and oxygen gases, with a capture capacity up to 1.56 mmol CO2 g-1. The low adsorption enthalpy of the synthesized hollow carbon spheres permits good adsorbent regeneration. Evaluation of the feasibility of scaling up shows their potential for large-scale applications.

15.
Environ Sci Technol ; 52(23): 13681-13689, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30387997

RESUMEN

This study presents the first field validation of using DNA-labeled silica nanoparticles as tracers to image subsurface reservoirs by travel time based tomography. During a field campaign in Switzerland, we performed short-pulse tracer tests under a forced hydraulic head gradient to conduct a multisource-multireceiver tracer test and tomographic inversion, determining the two-dimensional hydraulic conductivity field between two vertical wells. Together with three traditional solute dye tracers, we injected spherical silica nanotracers, encoded with synthetic DNA molecules, which are protected by a silica layer against damage due to chemicals, microorganisms, and enzymes. Temporal moment analyses of the recorded tracer concentration breakthrough curves (BTCs) indicate higher mass recovery, less mean residence time, and smaller dispersion of the DNA-labeled nanotracers, compared to solute dye tracers. Importantly, travel time based tomography, using nanotracer BTCs, yields a satisfactory hydraulic conductivity tomogram, validated by the dye tracer results and previous field investigations. These advantages of DNA-labeled nanotracers, in comparison to traditional solute dye tracers, make them well-suited for tomographic reservoir characterizations in fields such as hydrogeology, petroleum engineering, and geothermal energy, particularly with respect to resolving preferential flow paths or the heterogeneity of contact surfaces or by enabling source zone characterizations of dense nonaqueous phase liquids.


Asunto(s)
Dióxido de Silicio , Movimientos del Agua , ADN , Modelos Teóricos , Suiza , Tomografía
16.
Environ Sci Technol ; 52(21): 12142-12152, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30277386

RESUMEN

Environmental tracing is a direct way to characterize aquifers, evaluate the solute transfer parameter in underground reservoirs, and track contamination. By performing multitracer tests, and translating the tracer breakthrough times into tomographic maps, key parameters such as a reservoir's effective porosity and permeability field may be obtained. DNA, with its modular design, allows the generation of a virtually unlimited number of distinguishable tracers. To overcome the insufficient DNA stability due to microbial activity, heat, and chemical stress, we present a method to encapsulated DNA into silica with control over the particle size. The reliability of DNA quantification is improved by the sample preservation with NaN3 and particle redispersion strategies. In both sand column and unconsolidated aquifer experiments, DNA-based particle tracers exhibited slightly earlier and sharper breakthrough than the traditional solute tracer uranine. The reason behind this observation is the size exclusion effect, whereby larger tracer particles are excluded from small pores, and are therefore transported with higher average velocity, which is pore size-dependent. Identical surface properties, and thus flow behavior, makes the new material an attractive tracer to characterize sandy groundwater reservoirs or to track multiple sources of contaminants with high spatial resolution.


Asunto(s)
Agua Subterránea , Movimientos del Agua , ADN , Monitoreo del Ambiente , Modelos Teóricos , Reproducibilidad de los Resultados
17.
Nano Lett ; 17(9): 5277-5284, 2017 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-28770603

RESUMEN

Pure green light-emitting diodes (LEDs) are essential for realizing an ultrawide color gamut in next-generation displays, as is defined by the recommendation (Rec.) 2020 standard. However, because the human eye is more sensitive to the green spectral region, it is not yet possible to achieve an ultrapure green electroluminescence (EL) with a sufficiently narrow bandwidth that covers >95% of the Rec. 2020 standard in the CIE 1931 color space. Here, we demonstrate efficient, ultrapure green EL based on the colloidal two-dimensional (2D) formamidinium lead bromide (FAPbBr3) hybrid perovskites. Through the dielectric quantum well (DQW) engineering, the quantum-confined 2D FAPbBr3 perovskites exhibit a high exciton binding energy of 162 meV, resulting in a high photoluminescence quantum yield (PLQY) of ∼92% in the spin-coated films. Our optimized LED devices show a maximum current efficiency (ηCE) of 13.02 cd A-1 and the CIE 1931 color coordinates of (0.168, 0.773). The color gamut covers 97% and 99% of the Rec. 2020 standard in the CIE 1931 and the CIE 1976 color space, respectively, representing the "greenest" LEDs ever reported. Moreover, the device shows only a ∼10% roll-off in ηCE (11.3 cd A-1) at 1000 cd m-2. We further demonstrate large-area (3 cm2) and ultraflexible (bending radius of 2 mm) LEDs based on 2D perovskites.

18.
Chemistry ; 23(36): 8585-8589, 2017 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-28513883

RESUMEN

Tris(2-carboxyethyl)phosphine (TCEP) is an often-used reducing agent in biochemistry owing to its selectivity towards disulfide bonds. As TCEP causes undesired consecutive side reactions in various analytical methods (e.g., gel electrophoresis, protein labeling), it is usually removed by means of dialysis or gel filtration. Here, an alternative method of separation is presented, namely the immobilization of TCEP on magnetic nanoparticles. This magnetic reagent provides a simple and rapid approach to remove the reducing agent after successful reduction. A reduction capacity of 70 µmol per gram of particles was achieved by using surface-initiated atom transfer polymerization.

19.
Artif Organs ; 41(10): 948-958, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28691283

RESUMEN

The technology of 3D-printing has allowed the production of entirely soft pumps with complex chamber geometries. We used this technique to develop a completely soft pneumatically driven total artificial heart from silicone elastomers and evaluated its performance on a hybrid mock circulation. The goal of this study is to present an innovative concept of a soft total artificial heart (sTAH). Using the form of a human heart, we designed a sTAH, which consists of only two ventricles and produced it using a 3D-printing, lost-wax casting technique. The diastolic properties of the sTAH were defined and the performance of the sTAH was evaluated on a hybrid mock circulation under various physiological conditions. The sTAH achieved a blood flow of 2.2 L/min against a systemic vascular resistance of 1.11 mm Hg s/mL (afterload), when operated at 80 bpm. At the same time, the mean pulmonary venous pressure (preload) was fixed at 10 mm Hg. Furthermore, an aortic pulse pressure of 35 mm Hg was measured, with a mean aortic pressure of 48 mm Hg. The sTAH generated physiologically shaped signals of blood flow and pressures by mimicking the movement of a real heart. The preliminary results of this study show a promising potential of the soft pumps in heart replacements. Further work, focused on increasing blood flow and in turn aortic pressure is required.


Asunto(s)
Corazón Artificial , Hemodinámica , Impresión Tridimensional , Presión Arterial , Presión Sanguínea , Humanos , Ensayo de Materiales/instrumentación , Modelos Cardiovasculares , Diseño de Prótesis , Resistencia Vascular
20.
Small ; 12(4): 452-6, 2016 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-26670705

RESUMEN

Encapsulated nucleic acid selective damage quantification by real-time polymerase chain reaction is used as sensing mechanism to build a novel class of submicrometer size thermometer. Thanks to the high thermal and chemical stability, and the capability of storing the read accumulated thermal history, the sensor overcomes some of current limitations in small scale thermometry.


Asunto(s)
Ácidos Nucleicos/química , Tamaño de la Partícula , Termómetros , Calibración , ADN/química , ARN/química , Dióxido de Silicio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA