Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 19(11): e1011043, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38033156

RESUMEN

A prominent source of mutation in cancer is single-stranded DNA cytosine deamination by cellular APOBEC3 enzymes, which results in signature C-to-T and C-to-G mutations in TCA and TCT motifs. Although multiple enzymes have been implicated, reports conflict and it is unclear which protein(s) are responsible. Here we report the development of a selectable system to quantify genome mutation and demonstrate its utility by comparing the mutagenic activities of three leading candidates-APOBEC3A, APOBEC3B, and APOBEC3H. The human cell line, HAP1, is engineered to express the thymidine kinase (TK) gene of HSV-1, which confers sensitivity to ganciclovir. Expression of APOBEC3A and APOBEC3B, but not catalytic mutant controls or APOBEC3H, triggers increased frequencies of TK mutation and similar TC-biased cytosine mutation profiles in the selectable TK reporter gene. Whole genome sequences from independent clones enabled an analysis of thousands of single base substitution mutations and extraction of local sequence preferences with APOBEC3A preferring YTCW motifs 70% of the time and APOBEC3B 50% of the time (Y = C/T; W = A/T). Signature comparisons with breast tumor whole genome sequences indicate that most malignancies manifest intermediate percentages of APOBEC3 signature mutations in YTCW motifs, mostly between 50 and 70%, suggesting that both enzymes contribute in a combinatorial manner to the overall mutation landscape. Although the vast majority of APOBEC3A- and APOBEC3B-induced single base substitution mutations occur outside of predicted chromosomal DNA hairpin structures, whole genome sequence analyses and supporting biochemical studies also indicate that both enzymes are capable of deaminating the single-stranded loop regions of DNA hairpins at elevated rates. These studies combine to help resolve a long-standing etiologic debate on the source of APOBEC3 signature mutations in cancer and indicate that future diagnostic and therapeutic efforts should focus on both APOBEC3A and APOBEC3B.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/genética , Mutación , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Línea Celular , ADN/metabolismo , Antígenos de Histocompatibilidad Menor/genética , Citosina/metabolismo
2.
N Engl J Med ; 385(10): 921-929, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34469647

RESUMEN

Human papillomavirus (HPV) infections underlie a wide spectrum of both benign and malignant epithelial diseases. In this report, we describe the case of a young man who had encephalitis caused by herpes simplex virus during adolescence and currently presented with multiple recurrent skin and mucosal lesions caused by HPV. The patient was found to have a pathogenic germline mutation in the X-linked interleukin-2 receptor subunit gamma gene (IL2RG), which was somatically reverted in T cells but not in natural killer (NK) cells. Allogeneic hematopoietic-cell transplantation led to restoration of NK cytotoxicity, with normalization of the skin microbiome and persistent remission of all HPV-related diseases. NK cytotoxicity appears to play a role in containing HPV colonization and the ensuing HPV-related hyperplastic or dysplastic lesions. (Funded by the National Institutes of Health and the Herbert Irving Comprehensive Cancer Center Flow Cytometry Shared Resources.).


Asunto(s)
Mutación de Línea Germinal , Trasplante de Células Madre Hematopoyéticas , Células Asesinas Naturales/fisiología , Infecciones por Papillomavirus/terapia , Citotoxicidad Inmunológica , Encefalitis/virología , Femenino , Humanos , Células Asesinas Naturales/efectos de los fármacos , Masculino , Microbiota/efectos de los fármacos , Células T Asesinas Naturales/fisiología , Papillomaviridae , Infecciones por Papillomavirus/genética , Infecciones por Papillomavirus/inmunología , Linaje , Piel/microbiología , Trasplante Homólogo , Adulto Joven
3.
PLoS Pathog ; 18(4): e1010401, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35363834

RESUMEN

Polyomaviruses (PyV) are ubiquitous pathogens that can cause devastating human diseases. Due to the small size of their genomes, PyV utilize complex patterns of RNA splicing to maximize their coding capacity. Despite the importance of PyV to human disease, their transcriptome architecture is poorly characterized. Here, we compare short- and long-read RNA sequencing data from eight human and non-human PyV. We provide a detailed transcriptome atlas for BK polyomavirus (BKPyV), an important human pathogen, and the prototype PyV, simian virus 40 (SV40). We identify pervasive wraparound transcription in PyV, wherein transcription runs through the polyA site and circles the genome multiple times. Comparative analyses identify novel, conserved transcripts that increase PyV coding capacity. One of these conserved transcripts encodes superT, a T antigen containing two RB-binding LxCxE motifs. We find that superT-encoding transcripts are abundant in PyV-associated human cancers. Together, we show that comparative transcriptomic approaches can greatly expand known transcript and coding capacity in one of the simplest and most well-studied viral families.


Asunto(s)
Virus BK , Infecciones por Polyomavirus , Poliomavirus , Virus BK/genética , Humanos , Poliomavirus/genética , Infecciones por Polyomavirus/genética , Empalme del ARN , Virus 40 de los Simios/genética
4.
J Med Virol ; 96(5): e29674, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38757834

RESUMEN

Human Papillomaviruses (HPV) are a diverse family of non-enveloped dsDNA viruses that infect the skin and mucosal epithelia. Persistent HPV infections can lead to cancer frequently involving integration of the virus into the host genome, leading to sustained oncogene expression and loss of capsid and genome maintenance proteins. Microhomology-mediated double-strand break repair, a DNA double-stranded breaks repair pathway present in many organisms, was initially thought to be a backup but it's now seen as vital, especially in homologous recombination-deficient contexts. Increasing evidence has identified microhomology (MH) near HPV integration junctions, suggesting MH-mediated repair pathways drive integration. In this comprehensive review, we present a detailed summary of both the mechanisms underlying MH-mediated repair and the evidence for its involvement in HPV integration in cancer. Lastly, we highlight the involvement of these processes in the integration of other DNA viruses and the broader implications on virus lifecycles and host innate immune response.


Asunto(s)
Carcinogénesis , Papillomaviridae , Infecciones por Papillomavirus , Humanos , Papillomaviridae/patogenicidad , Papillomaviridae/genética , Papillomaviridae/fisiología , Infecciones por Papillomavirus/virología , Infecciones por Papillomavirus/complicaciones , Integración Viral , Reparación del ADN , Roturas del ADN de Doble Cadena , ADN Viral/genética
5.
Immunity ; 43(3): 566-78, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26362265

RESUMEN

Three subsets of invariant natural killer T (iNKT) cells have been identified, NKT1, NKT2, and NKT17, which produce distinct cytokines when stimulated, but little is known about their localization. Here, we have defined the anatomic localization and systemic distribution of these subsets and measured their cytokine production. Thymic NKT2 cells that produced interleukin-4 (IL-4) at steady state were located in the medulla and conditioned medullary thymocytes. NKT2 cells were abundant in the mesenteric lymph node (LN) of BALB/c mice and produced IL-4 in the T cell zone that conditioned other lymphocytes. Intravenous injection of α-galactosylceramide activated NKT1 cells with vascular access, but not LN or thymic NKT cells, resulting in systemic interferon-γ and IL-4 production, while oral α-galactosylceramide activated NKT2 cells in the mesenteric LN, resulting in local IL-4 release. These findings indicate that the localization of iNKT cells governs their cytokine response both at steady state and upon activation.


Asunto(s)
Citocinas/inmunología , Células T Asesinas Naturales/inmunología , Especificidad de Órganos/inmunología , Subgrupos de Linfocitos T/inmunología , Animales , Células Cultivadas , Citocinas/metabolismo , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Galactosilceramidas/inmunología , Galactosilceramidas/farmacología , Interferón gamma/inmunología , Interferón gamma/metabolismo , Interleucina-4/inmunología , Interleucina-4/metabolismo , Hígado/citología , Hígado/inmunología , Hígado/metabolismo , Pulmón/citología , Pulmón/inmunología , Pulmón/metabolismo , Ganglios Linfáticos/citología , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/metabolismo , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/inmunología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados , Ratones Transgénicos , Células T Asesinas Naturales/clasificación , Células T Asesinas Naturales/metabolismo , Especificidad de Órganos/efectos de los fármacos , Bazo/citología , Bazo/inmunología , Bazo/metabolismo , Subgrupos de Linfocitos T/citología , Subgrupos de Linfocitos T/metabolismo , Timocitos/inmunología , Timocitos/metabolismo , Timo/citología , Timo/inmunología , Timo/metabolismo
6.
Proc Natl Acad Sci U S A ; 116(44): 22158-22163, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31611371

RESUMEN

Human cells express up to 9 active DNA cytosine deaminases with functions in adaptive and innate immunity. Many cancers manifest an APOBEC mutation signature and APOBEC3B (A3B) is likely the main enzyme responsible. Although significant numbers of APOBEC signature mutations accumulate in tumor genomes, the majority of APOBEC-catalyzed uracil lesions are probably counteracted in an error-free manner by the uracil base excision repair pathway. Here, we show that A3B-expressing cells can be selectively killed by inhibiting uracil DNA glycosylase 2 (UNG) and that this synthetic lethal phenotype requires functional mismatch repair (MMR) proteins and p53. UNG knockout human 293 and MCF10A cells elicit an A3B-dependent death. This synthetic lethal phenotype is dependent on A3B catalytic activity and reversible by UNG complementation. A3B expression in UNG-null cells causes a buildup of genomic uracil, and the ensuing lethality requires processing of uracil lesions (likely U/G mispairs) by MSH2 and MLH1 (likely noncanonical MMR). Cancer cells expressing high levels of endogenous A3B and functional p53 can also be killed by expressing an UNG inhibitor. Taken together, UNG-initiated base excision repair is a major mechanism counteracting genomic mutagenesis by A3B, and blocking UNG is a potential strategy for inducing the selective death of tumors.


Asunto(s)
Muerte Celular , Citidina Desaminasa/genética , ADN Glicosilasas/genética , Desaminasas APOBEC , Línea Celular Tumoral , ADN Glicosilasas/antagonistas & inhibidores , Reparación de la Incompatibilidad de ADN , Reparación del ADN , Técnicas de Inactivación de Genes , Humanos , Modelos Moleculares , Ubiquitinación
8.
J Immunol ; 197(4): 1460-70, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27385777

RESUMEN

Invariant NKT cells differentiate into three predominant effector lineages in the steady state. To understand these lineages, we sorted undifferentiated invariant NK T progenitor cells and each effector population and analyzed their transcriptional profiles by RNAseq. Bioinformatic comparisons were made to effector subsets among other lymphocytes, specifically Th cells, innate lymphoid cells (ILC), and γδ T cells. Myc-associated signature genes were enriched in NKT progenitors, like in other hematopoietic progenitors. Only NKT1 cells, but not NKT2 and NKT17 cells, had transcriptome similarity to NK cells and were also similar to other IFN-γ-producing lineages such as Th1, ILC1, and intraepithelial γδ T cells. NKT2 and NKT17 cells were similar to their analogous subsets of γδ T cells and ILCs, but surprisingly, not to Th2 and Th17 cells. We identified a set of genes common to each effector lineage regardless of Ag receptor specificity, suggesting the use of conserved regulatory cores for effector function.


Asunto(s)
Linaje de la Célula/inmunología , Células T Asesinas Naturales/inmunología , Subgrupos de Linfocitos T/inmunología , Transcriptoma , Animales , Diferenciación Celular/inmunología , Linaje de la Célula/genética , Citometría de Flujo , Inmunidad Innata/genética , Inmunidad Innata/inmunología , Células Asesinas Naturales/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa , Receptores de Antígenos de Linfocitos T gamma-delta , Linfocitos T/inmunología , Linfocitos T Colaboradores-Inductores/inmunología
9.
J Virol ; 90(14): 6379-6386, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27147740

RESUMEN

UNLABELLED: The APOBEC3 family of DNA cytosine deaminases has important roles in innate immunity and cancer. It is unclear how DNA tumor viruses regulate these enzymes and how these interactions, in turn, impact the integrity of both the viral and cellular genomes. Polyomavirus (PyVs) are small DNA pathogens that contain oncogenic potentials. In this study, we examined the effects of PyV infection on APOBEC3 expression and activity. We demonstrate that APOBEC3B is specifically upregulated by BK polyomavirus (BKPyV) infection in primary kidney cells and that the upregulated enzyme is active. We further show that the BKPyV large T antigen, as well as large T antigens from related polyomaviruses, is alone capable of upregulating APOBEC3B expression and activity. Furthermore, we assessed the impact of A3B on productive BKPyV infection and viral genome evolution. Although the specific knockdown of APOBEC3B has little short-term effect on productive BKPyV infection, our informatics analyses indicate that the preferred target sequences of APOBEC3B are depleted in BKPyV genomes and that this motif underrepresentation is enriched on the nontranscribed stand of the viral genome, which is also the lagging strand during viral DNA replication. Our results suggest that PyV infection upregulates APOBEC3B activity to influence virus sequence composition over longer evolutionary periods. These findings also imply that the increased activity of APOBEC3B may contribute to PyV-mediated tumorigenesis. IMPORTANCE: Polyomaviruses (PyVs) are a group of emerging pathogens that can cause severe diseases, including cancers in immunosuppressed individuals. Here we describe the finding that PyV infection specifically induces the innate immune DNA cytosine deaminase APOBEC3B. The induced APOBEC3B enzyme is fully functional and therefore may exert mutational effects on both viral and host cell DNA. We provide bioinformatic evidence that, consistent with this idea, BK polyomavirus genomes are depleted of APOBEC3B-preferred target motifs and enriched for the corresponding predicted reaction products. These data imply that the interplay between PyV infection and APOBEC proteins may have significant impact on both viral evolution and virus-induced tumorigenesis.


Asunto(s)
Citidina Desaminasa/metabolismo , Regulación de la Expresión Génica , Genoma Viral , Túbulos Renales/enzimología , Antígenos de Histocompatibilidad Menor/metabolismo , Infecciones por Polyomavirus/virología , Poliomavirus/patogenicidad , Replicación Viral , Células Cultivadas , Citidina Desaminasa/antagonistas & inhibidores , Citidina Desaminasa/genética , Humanos , Túbulos Renales/virología , Antígenos de Histocompatibilidad Menor/genética , Poliomavirus/genética , Infecciones por Polyomavirus/patología , ARN Interferente Pequeño/genética , Activación Transcripcional , Regulación hacia Arriba
10.
bioRxiv ; 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38712252

RESUMEN

The initial objective of this study was to shed light on the evolution of small DNA tumor viruses by analyzing de novo assemblies of publicly available deep sequencing datasets. The survey generated a searchable database of contig snapshots representing more than 100,000 Sequence Read Archive records. Using modern structure-aware search tools, we iteratively broadened the search to include an increasingly wide range of other virus families. The analysis revealed a surprisingly diverse range of chimeras involving different virus groups. In some instances, genes resembling known DNA-replication modules or known virion protein operons were paired with unrecognizable sequences that structural predictions suggest may represent previously unknown replicases and novel virion architectures. Discrete clades of an emerging group called adintoviruses were discovered in datasets representing humans and other primates. As a proof of concept, we show that the contig database is also useful for discovering RNA viruses and candidate archaeal phages. The ancillary searches revealed additional examples of chimerization between different virus groups. The observations support a gene-centric taxonomic framework that should be useful for future virus-hunting efforts.

11.
bioRxiv ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38979305

RESUMEN

Mechanisms of tumorigenesis in sinonasal squamous cell carcinoma (SNSCC) remain poorly described due to its rare nature. A subset of SNSCC are associated with the human papillomavirus (HPV); however, it is unknown whether HPV is a driver of HPV-associated SNSCC tumorigenesis or merely a neutral bystander. We hypothesized that performing the first large high-throughput sequencing study of SNSCC would reveal molecular mechanisms of tumorigenesis driving HPV-associated and HPV-independent SNSCC and identify targetable pathways. High-throughput sequencing was performed on 64 patients with HPV-associated and HPV-independent sinonasal carcinomas. Mutation annotation, viral integration, copy number, and pathway-based analyses were performed. Analysis of HPV-associated SNSCC revealed similar mutational patterns observed in HPV-associated cervical and head and neck squamous cell carcinoma, including lack of TP53 mutations and the presence of known hotspot mutations in PI3K and FGFR3. Further similarities included enrichment of APOBEC mutational signature, viral integration at known hotspot locations, and frequent mutations in epigenetic regulators. HPV-associated SNSCC-specific recurrent mutations were also identified including KMT2C , UBXN11 , AP3S1 , MT-ND4 , and MT-ND5 . Mutations in KMT2D and FGFR3 were associated with decreased overall survival. We developed the first known HPV-associated SNSCC cell line and combinatorial small molecule inhibition of YAP/TAZ and PI3K pathways synergistically inhibited tumor cell clonogenicity. In conclusion, HPV-associated SNSCC and HPV-independent SNSCC are driven by molecularly distinct mechanisms of tumorigenesis. Combinatorial blockade of YAP/TAZ and vertical inhibition of the PI3K pathway may be useful in targeting HPV-associated SNSCC whereas targeting MYC and horizontal inhibition of RAS/PI3K pathways for HPV-independent SNSCC. One Sentence Summary: This study solidifies HPV as a driver of HPV-associated SNSCC tumorigenesis, identifies molecular mechanisms distinguishing HPV-associated and HPV-independent SNSCC, and elucidates YAP/TAZ and PI3K blockade as key targets for HPV-associated SNSCC.

12.
Cancer Discov ; 13(1): 17-18, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36620882

RESUMEN

SUMMARY: Chronic infection by several "high-risk" human papillomavirus (HPV) types has been causally implicated in several forms of anogenital and oropharyngeal cancers. Now, HPV42, which is usually classified as a "low-risk" type, can be listed as the main cause of digital papillary adenocarcinoma, an uncommon malignant tumor of the fingers and toes. See related article by Leiendecker et al., p. 70 (3).


Asunto(s)
Adenocarcinoma Papilar , Neoplasias Óseas , Neoplasias de la Mama , Neoplasias Orofaríngeas , Infecciones por Papillomavirus , Humanos , Femenino , Virus del Papiloma Humano , Infecciones por Papillomavirus/complicaciones , Infecciones por Papillomavirus/virología , Neoplasias Orofaríngeas/virología , Células Germinativas/patología
13.
J Acquir Immune Defic Syndr ; 94(4): 337-340, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37884054

RESUMEN

BACKGROUND: People living with HIV (PLWH) have elevated risk for developing virus-related cancers. Bladder cancer risk is not increased in PLWH but is elevated among immunosuppressed solid organ transplant recipients (SOTRs). BK polyomavirus and, to a lesser extent, other viruses have been detected in bladder cancers from SOTRs. OBJECTIVE: To characterize the virome of bladder tumors in PLWH. DESIGN: Retrospective case series. METHODS: We sequenced DNA and RNA from archived formalin-fixed bladder tumors from PLWH. Nonhuman reads were assembled and matched to a database of known viruses. RESULTS: Fifteen bladder tumors from PLWH (13 carcinomas, 2 benign tumors) were evaluated. Fourteen tumors were in men, and the median age at diagnosis was 59 years (median CD4 count 460 cells/mm3). All but 1 tumor yielded both sufficient DNA and RNA. One bladder cancer, arising in a 52-year-old man with a CD4 count of 271 cells/mm3, manifested diverse Alphatorquevirus DNA and RNA sequences. A second cancer arising in a 58-year-old male former smoker (CD4 count of 227 cells/mm3) also showed Alphatorquevirus and Gammatorquevirus DNA sequences. Neither tumor exhibited viral integration. CONCLUSIONS: Alphatorqueviruses and Gammatorqueviruses are anelloviruses, which have also been detected in bladder cancers from SOTRs, but anelloviruses are common infections, and detection may simply reflect increased abundance in the setting of immunosuppression. The lack of detection of BK polyomavirus among bladder tumors from PLWH parallels the lower level of bladder cancer risk seen in PLWH compared with SOTRs, indirectly supporting a role for BK polyomavirus in causing the excess risk in SOTRs.


Asunto(s)
Virus BK , Infecciones por VIH , Neoplasias de la Vejiga Urinaria , Humanos , Masculino , Persona de Mediana Edad , Virus BK/genética , ADN , Estudios Retrospectivos , ARN , Neoplasias de la Vejiga Urinaria/epidemiología , Neoplasias de la Vejiga Urinaria/patología , Viroma , Femenino
14.
Elife ; 122023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-36961501

RESUMEN

A small percentage of bladder cancers in the general population have been found to harbor DNA viruses. In contrast, up to 25% of tumors of solid organ transplant recipients, who are at an increased risk of developing bladder cancer and have an overall poorer outcomes, harbor BK polyomavirus (BKPyV). To better understand the biology of the tumors and the mechanisms of carcinogenesis from potential oncoviruses, we performed whole genome and transcriptome sequencing on bladder cancer specimens from 43 transplant patients. Nearly half of the tumors from this patient population contained viral sequences. The most common were from BKPyV (N=9, 21%), JC polyomavirus (N=7, 16%), carcinogenic human papillomaviruses (N=3, 7%), and torque teno viruses (N=5, 12%). Immunohistochemistry revealed variable Large T antigen expression in BKPyV-positive tumors ranging from 100% positive staining of tumor tissue to less than 1%. In most cases of BKPyV-positive tumors, the viral genome appeared to be clonally integrated into the host chromosome consistent with microhomology-mediated end joining and coincided with focal amplifications of the tumor genome similar to other virus-mediated cancers. Significant changes in host gene expression consistent with the functions of BKPyV Large T antigen were also observed in these tumors. Lastly, we identified four mutation signatures in our cases, with those attributable to APOBEC3 and SBS5 being the most abundant. Mutation signatures associated with an antiviral drug, ganciclovir, and aristolochic acid, a nephrotoxic compound found in some herbal medicines, were also observed. The results suggest multiple pathways to carcinogenesis in solid organ transplant recipients with a large fraction being virus-associated.


Asunto(s)
Virus BK , Trasplante de Órganos , Infecciones por Polyomavirus , Neoplasias de la Vejiga Urinaria , Humanos , Infecciones por Polyomavirus/complicaciones , Infecciones por Polyomavirus/epidemiología , Virus BK/genética , Carcinogénesis , Neoplasias de la Vejiga Urinaria/genética , Antígenos Virales de Tumores , Trasplante de Órganos/efectos adversos
15.
Cancer Prev Res (Phila) ; 16(10): 561-570, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37477495

RESUMEN

FGFR3 and PIK3CA are among the most frequently mutated genes in bladder tumors. We hypothesized that recurrent mutations in these genes might be caused by common carcinogenic exposures such as smoking and other factors. We analyzed 2,816 bladder tumors with available data on FGFR3 and/or PIK3CA mutations, focusing on the most recurrent mutations detected in ≥10% of tumors. Compared to tumors with other FGFR3/PIK3CA mutations, FGFR3-Y375C was more common in tumors from smokers than never-smokers (P = 0.009), while several APOBEC-type driver mutations were enriched in never-smokers: FGFR3-S249C (P = 0.013) and PIK3CA-E542K/PIK3CA-E545K (P = 0.009). To explore possible causes of these APOBEC-type mutations, we analyzed RNA sequencing (RNA-seq) data from 798 bladder tumors and detected several viruses, with BK polyomavirus (BKPyV) being the most common. We then performed IHC staining for polyomavirus (PyV) Large T-antigen (LTAg) in an independent set of 211 bladder tumors. Overall, by RNA-seq or IHC-LTAg, we detected PyV in 26 out of 1,010 bladder tumors with significantly higher detection (P = 4.4 × 10-5), 25 of 554 (4.5%) in non-muscle-invasive bladder cancers (NMIBC) versus 1 of 456 (0.2%) of muscle-invasive bladder cancers (MIBC). In the NMIBC subset, the FGFR3/PIK3CA APOBEC-type driver mutations were detected in 94.7% (18/19) of PyV-positive versus 68.3% (259/379) of PyV-negative tumors (P = 0.011). BKPyV tumor positivity in the NMIBC subset with FGFR3- or PIK3CA-mutated tumors was also associated with a higher risk of progression to MIBC (P = 0.019). In conclusion, our results support smoking and BKPyV infection as risk factors contributing to bladder tumorigenesis in the general patient population through distinct molecular mechanisms. PREVENTION RELEVANCE: Tobacco smoking likely causes one of the most common mutations in bladder tumors (FGFR3-Y375C), while viral infections might contribute to three others (FGFR3-S249C, PIK3CA-E542K, and PIK3CA-E545K). Understanding the causes of these mutations may lead to new prevention and treatment strategies, such as viral screening and vaccination.


Asunto(s)
Neoplasias de la Vejiga Urinaria , Virosis , Humanos , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología , Mutación , Vejiga Urinaria/patología , Fosfatidilinositol 3-Quinasa Clase I/genética
16.
J Clin Invest ; 132(13)2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35775490

RESUMEN

Cancers avoid immune surveillance through an array of mechanisms, including perturbation of HLA class I antigen presentation. Merkel cell carcinoma (MCC) is an aggressive, HLA-I-low, neuroendocrine carcinoma of the skin often caused by the Merkel cell polyomavirus (MCPyV). Through the characterization of 11 newly generated MCC patient-derived cell lines, we identified transcriptional suppression of several class I antigen presentation genes. To systematically identify regulators of HLA-I loss in MCC, we performed parallel, genome-scale, gain- and loss-of-function screens in a patient-derived MCPyV-positive cell line and identified MYCL and the non-canonical Polycomb repressive complex 1.1 (PRC1.1) as HLA-I repressors. We observed physical interaction of MYCL with the MCPyV small T viral antigen, supporting a mechanism of virally mediated HLA-I suppression. We further identify the PRC1.1 component USP7 as a pharmacologic target to restore HLA-I expression in MCC.


Asunto(s)
Carcinoma de Células de Merkel , Poliomavirus de Células de Merkel , Infecciones por Polyomavirus , Neoplasias Cutáneas , Antígenos Virales de Tumores/genética , Antígenos Virales de Tumores/metabolismo , Carcinoma de Células de Merkel/genética , Carcinoma de Células de Merkel/patología , Epigénesis Genética , Humanos , Poliomavirus de Células de Merkel/genética , Poliomavirus de Células de Merkel/metabolismo , Infecciones por Polyomavirus/genética , Neoplasias Cutáneas/patología , Peptidasa Específica de Ubiquitina 7/metabolismo
17.
Virus Evol ; 7(1): veaa055, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34646575

RESUMEN

Polintons (also known as Mavericks) were initially identified as a widespread class of eukaryotic transposons named for their hallmark type B DNA polymerase and retrovirus-like integrase genes. It has since been recognized that many polintons encode possible capsid proteins and viral genome-packaging ATPases similar to those of a diverse range of double-stranded DNA viruses. This supports the inference that at least some polintons are actually viruses capable of cell-to-cell spread. At present, there are no polinton-associated capsid protein genes annotated in public sequence databases. To rectify this deficiency, we used a data-mining approach to investigate the distribution and gene content of polinton-like elements and related DNA viruses in animal genomic and metagenomic sequence datasets. The results define a discrete family-like clade of viruses with two genus-level divisions. We propose the family name Adintoviridae, connoting similarities to adenovirus virion proteins and the presence of a retrovirus-like integrase gene. Although adintovirus-class PolB sequences were detected in datasets for fungi and various unicellular eukaryotes, sequences resembling adintovirus virion proteins and accessory genes appear to be restricted to animals. Degraded adintovirus sequences are endogenized into the germlines of a wide range of animals, including humans.

18.
Clin Cancer Res ; 27(2): 389-393, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-32907843

RESUMEN

Sebaceous carcinoma is an aggressive skin cancer with a 5-year overall survival rate of 78% for localized/regional disease and 50% for metastatic disease. The incidence of this cancer has been increasing in the United States for several decades, but the underlying reasons for this increase are unclear. In this article, we review the epidemiology and genetics of sebaceous carcinoma, including recent population data and tumor genomic analyses that provide new insights into underlying tumor biology. We further discuss emerging evidence of a possible viral etiology for this cancer. Finally, we review the clinical implications of recent advances in sebaceous carcinoma research for screening, prevention, and treatment.


Asunto(s)
Detección Precoz del Cáncer/estadística & datos numéricos , Programa de VERF/estadística & datos numéricos , Neoplasias de las Glándulas Sebáceas/genética , Neoplasias Cutáneas/genética , Detección Precoz del Cáncer/métodos , Genómica/métodos , Humanos , Incidencia , Inestabilidad de Microsatélites , Factores de Riesgo , Neoplasias de las Glándulas Sebáceas/diagnóstico , Neoplasias de las Glándulas Sebáceas/epidemiología , Neoplasias Cutáneas/diagnóstico , Neoplasias Cutáneas/prevención & control , Estados Unidos/epidemiología
19.
Oncotarget ; 11(47): 4401-4410, 2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33315984

RESUMEN

Merkel cell carcinoma is a rare cancer for which immune checkpoint blockade is standard-of-care for recurrent/metastatic disease. However, not all patients benefit from immunotherapy. A greater understanding of molecular mechanisms and predictive biomarkers are unmet needs. We retrospectively analyzed electronic health records and next-generation sequencing data of 45 patients treated at our institution from 2013 to 2020 to understand clinical and genomic correlates of benefit from immunotherapy. Our cohort predominantly included individuals with stage III disease at primary disease diagnosis and individuals with stage IV disease at recurrent/metastatic disease diagnosis. Most received immunotherapy as first-line treatment. 43% experienced objective response (median duration of response 24.2 months, 95% confidence interval 8.8-not reached). Median overall survival was 15.5 months (95% confidence interval 9.0-28.7) (median follow-up 25.2 months). Less advanced stage at primary disease diagnosis and shorter disease-free interval between completion of initial treatment and recurrence were each associated with greater odds of response (odds ratio of 0.06, p = 0.04 for stage; odds ratio 0.75, p = 0.05 for disease-free interval). Single-nucleotide variants in ARID2 and NTRK1 were associated with response (p = 0.05, without Bonferroni correction), while none of Merkel cell polyomavirus status, total mutational burden, ultraviolet mutational signatures, and copy-number alterations predicted outcomes. Patients with shorter disease-free interval may be particularly suitable immunotherapy candidates. Our molecular findings point to ARID2 and NTRK1 as potential predictive markers and/or therapeutic targets (e.g., with Trk inhibitors), although this association needs to be confirmed in a larger sample.

20.
Genome Med ; 12(1): 30, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32188490

RESUMEN

BACKGROUND: Merkel cell carcinoma (MCC) is a highly aggressive neuroendocrine carcinoma of the skin caused by either the integration of Merkel cell polyomavirus (MCPyV) and expression of viral T antigens or by ultraviolet-induced damage to the tumor genome from excessive sunlight exposure. An increasing number of deep sequencing studies of MCC have identified significant differences between the number and types of point mutations, copy number alterations, and structural variants between virus-positive and virus-negative tumors. However, it has been challenging to reliably distinguish between virus positive and UV damaged MCC. METHODS: In this study, we assembled a cohort of 71 MCC patients and performed deep sequencing with OncoPanel, a clinically implemented, next-generation sequencing assay targeting over 400 cancer-associated genes. To improve the accuracy and sensitivity for virus detection compared to traditional PCR and IHC methods, we developed a hybrid capture baitset against the entire MCPyV genome and software to detect integration sites and structure. RESULTS: Sequencing from this approach revealed distinct integration junctions in the tumor genome and generated assemblies that strongly support a model of microhomology-initiated hybrid, virus-host, circular DNA intermediate that promotes focal amplification of host and viral DNA. Using the clear delineation between virus-positive and virus-negative tumors from this method, we identified recurrent somatic alterations common across MCC and alterations specific to each class of tumor, associated with differences in overall survival. Finally, comparing the molecular and clinical data from these patients revealed a surprising association of immunosuppression with virus-negative MCC and significantly shortened overall survival. CONCLUSIONS: These results demonstrate the value of high-confidence virus detection for identifying molecular mechanisms of UV and viral oncogenesis in MCC. Furthermore, integrating these data with clinical data revealed features that could impact patient outcome and improve our understanding of MCC risk factors.


Asunto(s)
Carcinoma de Células de Merkel/genética , Mutación , Infecciones por Polyomavirus/genética , Neoplasias Cutáneas/genética , Infecciones Tumorales por Virus/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma de Células de Merkel/patología , Carcinoma de Células de Merkel/virología , Niño , ADN de Neoplasias/genética , ADN Viral/genética , Femenino , Pruebas Genéticas/métodos , Humanos , Masculino , Persona de Mediana Edad , Poliomavirus/genética , Poliomavirus/patogenicidad , Infecciones por Polyomavirus/patología , Infecciones por Polyomavirus/virología , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/virología , Análisis de Supervivencia , Infecciones Tumorales por Virus/patología , Infecciones Tumorales por Virus/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA