Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 56(22): 15290-15297, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36318938

RESUMEN

97% of the urban population in the EU in 2019 were exposed to an annual fine particulate matter level higher than the World Health Organization (WHO) guidelines (5 µg/m3). Organic aerosol (OA) is one of the major air pollutants, and the knowledge of its sources is crucial for designing cost-effective mitigation strategies. Positive matrix factorization (PMF) on aerosol mass spectrometer (AMS) or aerosol chemical speciation monitor (ACSM) data is the most common method for source apportionment (SA) analysis on ambient OA. However, conventional PMF requires extensive human labor, preventing the implementation of SA for routine monitoring applications. This study proposes the source finder real-time (SoFi RT, Datalystica Ltd.) approach for efficient retrieval of OA sources. The results generated by SoFi RT agree remarkably well with the conventional rolling PMF results regarding factor profiles, time series, diurnal patterns, and yearly relative contributions of OA factor on three year-long ACSM data sets collected in Athens, Paris, and Zurich. Although the initialization of SoFi RT requires a priori knowledge of OA sources (i.e., the approximate number of factors and relevant factor profiles) for the sampling site, this technique minimizes user interactions. Eventually, it could provide up-to-date trustable information on timescales useful to policymakers and air quality modelers.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Humanos , Ciudades , Monitoreo del Ambiente/métodos , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Contaminación del Aire/prevención & control , Contaminación del Aire/análisis
2.
Sci Total Environ ; 915: 170042, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38232850

RESUMEN

Ultrafine particles (UFP) are recognized as an emerging pollutant able to induce serious health effects. However, quantitative information regarding the contributions of UFP sources is generally limited. This study evaluates statistical (k-means clustering) and receptor models (Positive Matrix Factorization - PMF) using particle number size distributions (PNSD), along with chemical speciation data, measured at an urban background supersite in Athens, Greece, aiming to characterize their sources. PNSD measurements (10-487 nm) were performed during three distinct periods (warm, cold, and lockdown cold). Traffic and residential biomass burning (BB) produced high UFP number concentrations (NUFP) in the cold period (+107 % compared to summer), while the lockdown restrictions reduced NUFP (-42 %). The five groups produced by cluster analysis that were common among periods were linked to high- and low-traffic, new particle formation (NPF), urban background and regional aerosols. PMF source apportionment identified 5 and 6 factors during warm and cold periods, respectively, indicating that traffic particles dominated NUFP (64-78 % in all periods), while accumulation-mode particles and volume concentrations were controlled by processed aerosol, and especially in the cold periods by BB emissions. A nucleation factor linked to NPF contributed 7-11 % to NUFP. Comparing the two cold periods (business-as-usual, lockdown), important lockdown reductions (-46 %) were seen for fresh traffic contributions to total number concentration (Ntotal). The impact of the source attributed to NPF also eroded (-41 % for Ntotal). Due to the large reduction (-47 % for Ntotal) observed also for the BB source during the lockdown (reduced wood usage due to a milder winter), the relative contributions of all sources did not change considerably (fractional reductions <7 % for Ntotal). The quantitative results, bolstered by source apportionment combining PNSD and online chemical composition measurements, indicate the potential to constrain UFP levels by regulating traffic and residential emissions, with a large upside for population exposure control.

3.
Environ Int ; 186: 108610, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38626495

RESUMEN

Greater Cairo, the largest megacity of the Middle East North Africa (MENA) region, is currently suffering from major aerosol pollution, posing a significant threat to public health. However, the main sources of pollution remain insufficiently characterized due to limited atmospheric observations. To bridge this knowledge gap, we conducted a continuous 2-month field study during the winter of 2019-2020 at an urban background site, documenting for the first time the chemical and physical properties of submicron (PM1) aerosols. Crustal material from both desert dust and road traffic dust resuspension contributed as much as 24 % of the total PM1 mass (rising to 66 % during desert dust events), a figure not commonly observed in urban environments. Our observations showed significant decreases in black carbon concentrations and ammonium sulfate compared to data from 15 years ago, indicating an important reduction in both local and regional emissions as a result of effective mitigation measures. The diurnal variability of carbonaceous aerosols was attributed to emissions emanating from local traffic at rush hours and nighttime open biomass burning. Surprisingly, semi-volatile ammonium chloride (NH4Cl) originating from local open biomass and waste burning was found to be the main chemical species in PM1 over Cairo. Its nighttime formation contributed to aerosol water uptake during morning hours, thereby playing a major role in the build-up of urban haze. While our results confirm the persistence of a significant dust reservoir over Cairo, they also unveil an additional source of highly hygroscopic (semi-volatile) inorganic salts, leading to a unique type of urban haze. This haze, with dominant contributors present in both submicron (primarily as NH4Cl) and supermicron (largely as dust) modes, underscores the potential implications of heterogeneous chemical transformation of air pollutants in urban environments.


Asunto(s)
Aerosoles , Contaminantes Atmosféricos , Contaminación del Aire , Monitoreo del Ambiente , Material Particulado , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Egipto , Contaminación del Aire/estadística & datos numéricos , Material Particulado/análisis , Ciudades , Polvo/análisis , Tamaño de la Partícula
4.
Sci Total Environ ; 903: 166592, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-37640072

RESUMEN

Biomass combustion releases a complex array of Volatile Organic Compounds (VOCs) that pose significant challenges to air quality and human health. Although biomass burning has been extensively studied at ecosystem levels, understanding the atmospheric transformation and impact on air quality of emissions in urban environments remains challenging due to complex sources and burning materials. In this study, we investigate the VOC emission rates and atmospheric chemical processing of predominantly wood burning emissions in a small urban centre in Greece. Ioannina is situated in a valley within the Dinaric Alps and experiences intense atmospheric pollution accumulation during winter due to its topography and high wood burning activity. During pollution event days, the ambient mixing ratios of key VOC species were found to be similar to those reported for major urban centres worldwide. Positive matrix factorisation (PMF) analysis revealed that biomass burning was the dominant emission source (>50 %), representing two thirds of OH reactivity, which indicates a highly reactive atmospheric mixture. Calculated OH reactivity ranges from 5 s-1 to an unprecedented 278 s-1, and averages at 93 ± 66 s-1 at 9 PM, indicating the presence of exceptionally reactive VOCs. The highly pronounced photochemical formation of organic acids coincided with the formation of ozone, highlighting the significance of secondary formation of pollutants in poorly ventilated urban areas. Our findings underscore the pressing need to transition from wood burning to environmentally friendly sources of energy in poorly ventilated urban areas, in order to improve air quality and safeguard public health.

5.
Environ Int ; 178: 108081, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37451041

RESUMEN

This study analyzed the variability of equivalent black carbon (eBC) mass concentrations and their sources in urban Europe to provide insights into the use of eBC as an advanced air quality (AQ) parameter for AQ standards. This study compiled eBC mass concentration datasets covering the period between 2006 and 2022 from 50 measurement stations, including 23 urban background (UB), 18 traffic (TR), 7 suburban (SUB), and 2 regional background (RB) sites. The results highlighted the need for the harmonization of eBC measurements to allow for direct comparisons between eBC mass concentrations measured across urban Europe. The eBC mass concentrations exhibited a decreasing trend as follows: TR > UB > SUB > RB. Furthermore, a clear decreasing trend in eBC concentrations was observed in the UB sites moving from Southern to Northern Europe. The eBC mass concentrations exhibited significant spatiotemporal heterogeneity, including marked differences in eBC mass concentration and variable contributions of pollution sources to bulk eBC between different cities. Seasonal patterns in eBC concentrations were also evident, with higher winter concentrations observed in a large proportion of cities, especially at UB and SUB sites. The contribution of eBC from fossil fuel combustion, mostly traffic (eBCT) was higher than that of residential and commercial sources (eBCRC) in all European sites studied. Nevertheless, eBCRC still had a substantial contribution to total eBC mass concentrations at a majority of the sites. eBC trend analysis revealed decreasing trends for eBCT over the last decade, while eBCRC remained relatively constant or even increased slightly in some cities.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Aerosoles/análisis , Contaminación del Aire/análisis , Europa (Continente) , Estaciones del Año , Hollín/análisis , Carbono/análisis , Material Particulado/análisis
7.
Sci Data ; 4: 170003, 2017 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-28291234

RESUMEN

Cloud condensation nuclei (CCN) number concentrations alongside with submicrometer particle number size distributions and particle chemical composition have been measured at atmospheric observatories of the Aerosols, Clouds, and Trace gases Research InfraStructure (ACTRIS) as well as other international sites over multiple years. Here, harmonized data records from 11 observatories are summarized, spanning 98,677 instrument hours for CCN data, 157,880 for particle number size distributions, and 70,817 for chemical composition data. The observatories represent nine different environments, e.g., Arctic, Atlantic, Pacific and Mediterranean maritime, boreal forest, or high alpine atmospheric conditions. This is a unique collection of aerosol particle properties most relevant for studying aerosol-cloud interactions which constitute the largest uncertainty in anthropogenic radiative forcing of the climate. The dataset is appropriate for comprehensive aerosol characterization (e.g., closure studies of CCN), model-measurement intercomparison and satellite retrieval method evaluation, among others. Data have been acquired and processed following international recommendations for quality assurance and have undergone multiple stages of quality assessment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA