Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Soft Matter ; 20(10): 2288-2300, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38358107

RESUMEN

Micelle sizes are critical for a range of applications where the simple ability to adjust and lock in specific stable sizes has remained largely elusive. While micelle swelling agents are well-known, their dynamic re-equilibration in solution implies limited stability. Here, a non-equilibrium processing sequence is studied where supersaturated homopolymer swelling is combined with glassy-core ("persistent") micelles. This path-dependent process was found to sensitively depend on unimer concentration as revealed by DLS, SAXS, and TEM analysis. Here, lower-selectivity solvent combinations led to the formation of unimer-homopolymer aggregates and eventual precipitation, reminiscent of anomalous micellization. In contrast, higher-selectivity solvents enabled supersaturated homopolymer loadings favored by rapid homopolymer insertion. The demonstrated ∼40-130 nm core-size tuning exceeded prior equilibrium demonstrations and subsequent core-vitrification enabled size persistence beyond 6 months. Lastly, the linear change in micelle diameter with homopolymer addition was found to correlate with a plateau in the interfacial area per copolymer chain.

2.
Soft Matter ; 19(19): 3487-3495, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37133391

RESUMEN

Chain exchange in amphiphilic block polymer micelles is measurable with time-resolved small-angle neutron scattering (TR-SANS) where contrast-matched conditions reveal chain mixing as reduced intensity. However, analyzing chain mixing on short time scales e.g. during micelle transformations remains challenging. SANS model fitting can quantify chain mixing during size and morphology changes, however short acquisition times lead to lower data statistics (higher error). Such data are unsuitable for form factor fitting, especially with polydisperse and/or multimodal scenarios. An integrated-reference approach, R(t), is compatible with such data by using fixed reference patterns for the unmixed and fully mixed states that are each integrated to improve data statistics (lower error). Although the R(t) approach is tolerant of low data statistics, it remains incompatible with size and morphology changes. A new shifting references relaxation approach, SRR(t), is proposed where reference patterns are acquired at each time point to enable mixed state calculations regardless of short acquisition times. The additional experimental measurements needed are described which provide these time-varying reference patterns. The use of reference patterns makes the SRR(t) approach size/morphology-agnostic, allowing for the extent of micelle mixing to be directly calculated without this knowledge. SRR(t) is thus compatible with arbitrary levels of complexity and can provide accurate assessment of the mixed state which could support future model analysis. Calculated scattering datasets were used to demonstrate the SRR(t) approach during multiple size, morphology, and solvent conditions (scenarios 1-3). The mixed state calculated from the SRR(t) approach is shown to be accurate for all three scenarios.

3.
Soft Matter ; 18(41): 7917-7930, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36017726

RESUMEN

Kinetically trapped ("persistent") micelles enable emerging applications requiring a constant core diameter. Preserving a χN barrier to chain exchange with low-N requires a commensurately higher χcore-solvent for micelle persistence. Low-N, high-χ micelles containing fluorophobic interactions were studied using poly(ethylene oxide-b-perfluorooctyl acrylate)s (O45FX, x = 8, 11) in methanolic solutions. DLS analysis of micelles revealed chain exchange only for O45F8 while SAXS analysis suggested elongated core block conformations commensurate with the contour lengths. Micelle chain exchange from solution perturbations were examined by characterizing their behavior as templates for inorganic materials via SAXS and SEM. In contrast to the F8 analog, the larger χN barrier for the O45F11 enabled persistent micelle behavior in both thin films and bulk samples despite the low Tg micelle core. Careful measures of micelle core diameters and pore sizes revealed that the nanoparticle distribution extended through the corona and 0.52 ± 0.15 nm into the core-corona interface, highlighting thermodynamics favoring both locations simultaneously.

4.
Inorg Chem ; 61(28): 10942-10949, 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35797439

RESUMEN

Colloidal quantum dots (QDs) are attractive fluorophores for bioimaging and biomedical applications because of their favorable and tunable optoelectronic properties. In this study, the native hydrophobic ligand environment of oleate-capped sphalerite CdSe/ZnS core/shell QDs was quantitatively exchanged with a set of imidazole-bearing small-molecule ligands. Inductively coupled plasma-optical emission spectroscopy and 1H NMR were used to identify and quantify three different ligand exchange processes: Z-type dissociation of the Zn(oleate)2, L-type association of the imidazole, and X-type anionic exchange of oleate with Cl-, all of which contributed to the overall ligand exchange.


Asunto(s)
Compuestos de Cadmio , Puntos Cuánticos , Compuestos de Selenio , Compuestos de Cadmio/química , Imidazoles , Ligandos , Ácido Oléico , Puntos Cuánticos/química , Compuestos de Selenio/química , Solventes
5.
Langmuir ; 2021 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-34355919

RESUMEN

Polymer micelles have found significant uses in areas such as drug/gene delivery, medical imaging, and as templates for nanomaterials. For many of these applications, the micelle performance depends on its size and chemical functionalization. To date, however, these parameters have often been fundamentally coupled since the equilibrium size of a micelle is a function of the chemical composition in addition to other parameters. Here, we demonstrate a novel processing pathway allowing for the chemical modification to the corona of kinetically trapped "persistent" polymer micelles, termed Persistent Micelle Corona Chemistry (PMCC). Judicious planning is crucial to this size-controlled functionalization where each step requires all reagents and polymer blocks to be compatible with (1) the desired chemistry, (2) micelle persistency, and (3) micelle dispersion. A desired functionalization can be implemented with PMCC by pairing the synthetic planning with polymer solubility databases. Specifically, poly(cyclohexyl methacrylate-b-(diethoxyphosphoryl)methyl methacrylate) (PCHMA-b-PDEPMMA) was prepared to combine a glassy-core block (PCHMA) for kinetic control with a block (PDEPMMA) that is able to be hydrolyzed to yield acid groups. The processing sequence determines the resulting micelle size distribution where the hydrolyzed-then-micellized sequence yields widely varying micelle dimensions due to equilibration. In contrast, the micellized-then-hydrolyzed sequence maintains kinetically trapped micelles throughout the PMCC process. Statistically significant transmission electron microscopy (TEM) measurements demonstrate that PMCC uniquely enables this functionalization with constant average micelle core dimensions. Furthermore, these kinetically trapped micelles also subsequently maintain constant micelle core size when modifying the Coulombic interactions of the micelle corona via pH changes.

6.
Langmuir ; 37(44): 12874-12886, 2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34617769

RESUMEN

Mesoporous microparticles are an attractive platform to deploy high-surface-area nanomaterials in a convenient particulate form that is broadly compatible with diverse device manufacturing methods. The applications for mesoporous microparticles are numerous, spanning the gamut from drug delivery to catalysis and energy storage. For most applications, the performance of the resulting materials depends upon the architectural dimensions including the mesopore size, wall thickness, and microparticle size, yet a synthetic method to control all these parameters has remained elusive. Furthermore, some mesoporous microparticle reports noted a surface skin layer which has not been tuned before despite the important effect of such a skin layer upon transport/encapsulation. In the present study, material precursors and block polymer micelles are combined to yield mesoporous materials in a microparticle format due to phase separation from a homopolymer matrix. The skin layer thickness was kinetically controlled where a layer integration via diffusion (LID) model explains its production and dissipation. Furthermore, the independent tuning of pore size and wall thickness for mesoporous microparticles is shown for the first time using persistent micelle templates (PMT). Last, the kinetic effects of numerous processing parameters upon the microparticle size are shown.

7.
Langmuir ; 36(33): 9900-9908, 2020 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-32667804

RESUMEN

Crystalline films of the Cu3(BTC)2 (BTC3- = 1,3,5-benzenetricarboxylate) metal-organic framework (MOF) have been grown by dip-coating an alumina/Si(111) substrate in solutions of Cu(II) acetate and the organic linker H3BTC. Atomic force microscopy (AFM) experiments demonstrate that the substrate is completely covered by the MOF film, while grazing incidence wide-angle X-ray scattering (GIWAXS) establishes the crystallinity of the films. Forty cycles of dip-coating results in a film that is ∼70 nm thick with a root mean squared roughness of 25 nm and crystallites ranging from 50-160 nm in height. Co2+ ions were exchanged into the MOF framework by immersing the Cu3(BTC)2 films in solutions of CoCl2. By varying the temperature and exchange times, different concentrations of Co were incorporated into the films, as determined by X-ray photoelectron spectroscopy experiments. AFM studies showed that morphologies of the bimetallic films were largely unchanged after transmetalation, and GIWAXS indicated that the bimetallic films retained their crystallinity.

8.
Angew Chem Int Ed Engl ; 59(39): 17004-17011, 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32568438

RESUMEN

Developing high capacity and stable cathodes is a key to successful commercialization of aqueous Zn-ion batteries (ZIBs). Pure layered V2 O5 has a high theoretical capacity (585 mAh g-1 ), but it suffers severe capacity decay. Pre-inserting cations into V2 O5 can substantially stabilize the performance, but at an expense of lowered capacity. Here we show that an atomic layer deposition derived V2 O5 can be an excellent ZIB cathode with high capacity and exceptional cycle stability at once. We report a rapid in situ on-site transformation of V2 O5 atomic layers into Zn3 V2 O7 (OH)2 ⋅2 H2 O (ZVO) nanoflake clusters, also a known Zn-ion and proton intercalatable material. High concentration of reactive sites, strong bonding to the conductive substrate, nanosized thickness and binder-free composition facilitate ionic transport and promote the best utilization of the active material. We also provide new insights into the V2 O5 -dissolution mechanisms for different Zn-salt aqueous electrolytes and their implications to the cycle stability.

9.
Angew Chem Int Ed Engl ; 59(15): 6000-6006, 2020 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-31970859

RESUMEN

The effect of donor (D)-acceptor (A) alignment on the materials electronic structure was probed for the first time using novel purely organic porous crystalline materials with covalently bound two- and three-dimensional acceptors. The first studies towards estimation of charge transfer rates as a function of acceptor stacking are in line with the experimentally observed drastic, eight-fold conductivity enhancement. The first evaluation of redox behavior of buckyball- or tetracyanoquinodimethane-integrated crystalline was conducted. In parallel with tailoring the D-A alignment responsible for "static" changes in materials properties, an external stimulus was applied for "dynamic" control of the electronic profiles. Overall, the presented D-A strategic design, with stimuli-controlled electronic behavior, redox activity, and modularity could be used as a blueprint for the development of electroactive and conductive multidimensional and multifunctional crystalline porous materials.

10.
Small ; 15(18): e1900393, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30919590

RESUMEN

The predictive self-assembly of tunable nanostructures is of great utility for broad nanomaterial investigations and applications. The use of equilibrium-based approaches however prevents independent feature size control. Kinetic-controlled methods such as persistent micelle templates (PMTs) overcome this limitation and maintain constant pore size by imposing a large thermodynamic barrier to chain exchange. Thus, the wall thickness is independently adjusted via addition of material precursors to PMTs. Prior PMT demonstrations added water-reactive material precursors directly to aqueous micelle solutions. That approach depletes the thermodynamic barrier to chain exchange and thus limits the amount of material added under PMT-control. Here, an ex situ hydrolysis method is developed for TiO2 that mitigates this depletion of water and nearly decouples materials chemistry from micelle control. This enables the widest reported PMT range (M:T = 1.6-4.0), spanning the gamut from sparse walls to nearly isolated pores with ≈2 Å precision adjustment. This high-resolution nanomaterial series exhibits monotonic trends where PMT confinement within increasing wall-thickness leads to larger crystallites and an increasing extent of lithiation, reaching Li0.66 TiO2 . The increasing extent of lithiation with increasing anatase crystallite dimensions is attributed to the size-dependent strain mismatch of anatase and bronze polymorph mixtures.

11.
Soft Matter ; 15(26): 5193-5203, 2019 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-31204753

RESUMEN

The combination of precision control with wide tunability remains a challenge for the fabrication of porous nanomaterials suitable for studies of nanostructure-behavior relationships. Polymer micelle templates broadly enable porous materials, however micelle equilibration hampers independent pore and wall size control. Persistent micelle templates (PMT) have emerged as a kinetic controlled platform that uniquely decouples the control of pore and wall dimensions. Here, chain exchange is inhibited to preserve a constant template dimension (pore size) despite the shifting equilibrium while materials are added between micelles. Early PMT demonstrations were synthesis intensive with limited 1-1.3× pore size tuning for a given polymer. Here we demonstrate PMT swelling with homopolymer enables 1-3.2× (13.3-41.9 nm) pore size variation while maintaining a monomodal distribution with up to 250 wt% homopolymer, considerably higher than the ∼90 wt% limit found for equilibrating micelles. These swollen PMTs enabled nanomaterial series with constant pore size and precision varied wall-thickness. Kinetic size control here is unexpected since the homopolymer undergoes dynamic exchange between micelles. The solvent selection influenced the time window before homopolymer phase separation, highlighting the importance of considering homopolymer-solvent interactions. This is the first PMT demonstration with wide variation of both the pore and wall dimensions using a single block polymer. Lastly this approach was extended to a 72 kg mol-1 block polymer to enable a wide 50-290 nm range of tunable macropores. Here the use of just two different block polymers and one homopolymer enabled wide ranging pore sizes spanning from 13.3-290 nm (1-22×).

12.
Macromol Rapid Commun ; 40(19): e1900098, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31328312

RESUMEN

The directed assembly of conjugated polymers into macroscopic organization with controlled orientation and placement is pivotal in improving device performance. Here, the supramolecular assembly of oriented spherulitic crystals of poly(3-butylthiophene) surrounding a single carbon nanotube fiber under controlled solvent evaporation of solution-cast films is reported. Oriented lamellar structures nucleate on the surface of the nanotube fiber in the form of a transcrystalline interphase. The factors influencing the formation of transcrystals are investigated in terms of chemical structure, crystallization temperature, and time. Dynamic process measurements exhibit the linear growth of transcrystals with time. Microstructural analysis of transcrystals reveals individual lamellar organization and crystal polymorphism. The form II modification occurs at low temperatures, while both form I and form II modifications coexist at high temperatures. A possible model is presented to interpret transcrystallization and polymorphism.


Asunto(s)
Nanotubos de Carbono/química , Polímeros/química , Cristalización , Sustancias Macromoleculares/síntesis química , Sustancias Macromoleculares/química , Tamaño de la Partícula
13.
Small ; 14(46): e1802401, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30252206

RESUMEN

The efficacy with which solvent vapor annealing (SVA) can control block copolymer self-assembly has so far been demonstrated primarily for the simplest class of copolymer, the linear diblock copolymer. Adding a third distinct block-thereby creating a triblock terpolymer-not only provides convenient access to complex continuous network morphologies, particularly the gyroid phases, but also opens up a route toward the fabrication of novel nanoscale devices such as optical metamaterials. Such applications, however, require the generation of well-ordered 3D continuous networks, which in turn requires a detailed understanding of the SVA process in terpolymer network morphologies. Here, in situ grazing-incidence small-angle X-ray scattering (GISAXS) is employed to study the self-assembly of a gyroid-forming triblock terpolymer during SVA, revealing the effects of several key SVA parameters on the morphology, lateral order, and, in particular, its preservation in the dried film. The robustness of the terpolymer gyroid morphology is a key requirement for successful SVA, allowing the exploration of annealing parameters which may enable the generation of films with long-range order, e.g., for optical metamaterial applications.

14.
Langmuir ; 34(20): 5738-5749, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29701977

RESUMEN

The precision control of nanoscale materials remains a challenge for the study of nanostructure-performance relationships. Persistent micelle templates (PMT) are a kinetic-controlled self-assembly approach that decouples pore and wall control. Here, block copolymer surfactants form persistent micelles that maintain constant template size as material precursors are added, despite the shifting equilibrium dimensions. Earlier PMT demonstrations were based upon solvent mixtures where kinetic rates were adjusted with the amount of water cosolvent. This approach is however limited because ever-higher water contents can lead to secondary porosity within the material walls. Herein, we report an improved method to regulate the PMT kinetics via the majority solvent. This enables a new avenue for the expansion of the PMT window to realize templated materials with a greater extent of tunability. In addition, we report a new small-angle X-ray scattering (SAXS)-based log-log analysis method to independently test the micelle-templated series for consistency with the expected lattice expansion with an increasing material:template ratio. The PMT window identified by the log-log analysis of the SAXS data agreed well with independent scanning electron microscopy measurements. The combination of improved micelle control with solvent selection along with SAXS validation will accelerate the development of a myriad of nanomaterial applications.

15.
Chem Soc Rev ; 44(15): 5076-91, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-25856171

RESUMEN

The ability to control and modulate the interaction of light with matter is crucial to achieve desired optical properties including reflection, transmission, and selective polarization. Photonic materials rely upon precise control over the composition and morphology to establish periodic interactions with light on the wavelength and sub-wavelength length scales. Supramolecular assembly provides a natural solution allowing the encoding of a desired 3D architecture into the chemical building blocks and assembly conditions. The compatibility with solution processing and low-overhead manufacturing is a significant advantage over more complex approaches such as lithography or colloidal assembly. Here we review recent advances on photonic architectures derived from block copolymers and highlight the influence and complexity of processing pathways. Notable examples that have emerged from this unique synthesis platform include Bragg reflectors, antireflective coatings, and chiral metamaterials. We further predict expanded photonic capabilities and limits of these approaches in light of future developments of the field.

16.
Nano Lett ; 13(11): 5329-35, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24124901

RESUMEN

Low-cost antireflection coatings (ARCs) on large optical surfaces are an ingredient-technology for high-performance solar cells. While nanoporous thin films that meet the zero-reflectance conditions on transparent substrates can be cheaply manufactured, their suitability for outdoor applications is limited by the lack of robustness and cleanability. Here, we present a simple method for the manufacture of robust self-cleaning ARCs. Our strategy relies on the self-assembly of a block-copolymer in combination with silica-based sol-gel chemistry and preformed TiO2 nanocrystals. The spontaneous dense packing of copolymer micelles followed by a condensation reaction results in an inverse opal-type silica morphology that is loaded with TiO2 photocatalytic hot-spots. The very low volume fraction of the inorganic network allows the optimization of the antireflecting properties of the porous ARC despite the high refractive index of the embedded photocatalytic TiO2 nanocrystals. The resulting ARCs combine high optical and self-cleaning performance and can be deposited onto flexible plastic substrates.


Asunto(s)
Nanoestructuras/química , Óptica y Fotónica/métodos , Energía Solar , Polímeros/química , Refractometría , Dióxido de Silicio/química , Propiedades de Superficie , Titanio/química
17.
ACS Nano ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39074064

RESUMEN

Multimaterial heterostructures have led to characteristics surpassing the individual components. Nature controls the architecture and placement of multiple materials through biomineralization of nanoparticles (NPs); however, synthetic heterostructure formation remains limited and generally departs from the elegance of self-assembly. Here, a class of block polymer structure-directing agents (SDAs) are developed containing repeat units capable of persistent (covalent) NP interactions that enable the direct fabrication of nanoscale porous heterostructures, where a single material is localized at the pore surface as a continuous layer. This SDA binding motif (design rule 1) enables sequence-controlled heterostructures, where the composition profile and interfaces correspond to the synthetic addition order. This approach is generalized with 5 material sequences using an SDA with only persistent SDA-NP interactions ("P-NP1-NP2"; NPi = TiO2, Nb2O5, ZrO2). Expanding these polymer SDA design guidelines, it is shown that the combination of both persistent and dynamic (noncovalent) SDA-NP interactions ("PD-NP1-NP2") improves the production of uniform interconnected porosity (design rule 2). The resulting competitive binding between two segments of the SDA (P- vs D-) requires additional time for the first NP type (NP1) to reach and covalently attach to the SDA (design rule 3). The combination of these three design rules enables the direct self-assembly of heterostructures that localize a single material at the pore surface while preserving continuous porosity.

18.
Nano Lett ; 12(10): 5431-5, 2012 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-22974097

RESUMEN

Many candidate materials for photoelectrochemical water splitting will be better employed by decoupling optical absorption from carrier transport. A promising strategy is to use multiple thin absorber layers supported on transparent, conducting materials; however there are limited such materials that are both pH stable and depositable on arbitrary high surface area substrates. Here we present the first 3D porous niobium doped tin oxide (NTO) electrodes fabricated by atomic layer deposition. After high temperature crystallization the NTO is transparent, conductive, and stable over a wide range of pH. The optimized films have high electrical conductivity up to 37 S/cm concomitant with a low optical attenuation coefficient of 0.99 µm(-1) at 550 nm. NTO was deposited onto high surface area templates that were subsequently coated with hematite Fe(2)O(3) for the photoelectrochemical water splitting. This approach enabled near-record water splitting photocurrents for hematite electrodes employing a host-guest strategy.

19.
Small ; 8(3): 432-40, 2012 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-22174177

RESUMEN

Morphology control on the 10 nm length scale in mesoporous TiO(2) films is crucial for the manufacture of high-performance dye-sensitized solar cells. While the combination of block-copolymer self-assembly with sol-gel chemistry yields good results for very thin films, the shrinkage during the film manufacture typically prevents the build-up of sufficiently thick layers to enable optimum solar cell operation. Here, a study on the temporal evolution of block-copolymer-directed mesoporous TiO(2) films during annealing and calcination is presented. The in-situ investigation of the shrinkage process enables the establishment of a simple and fast protocol for the fabrication of thicker films. When used as photoanodes in solid-state dye-sensitized solar cells, the mesoporous networks exhibit significantly enhanced transport and collection rates compared to the state-of-the-art nanoparticle-based devices. As a consequence of the increased film thickness, power conversion efficiencies above 4% are reached.

20.
ACS Appl Mater Interfaces ; 14(50): 56143-56155, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36503231

RESUMEN

Mesoporous thin films are widely used for applications in need of high surface area and efficient mass and charge transport properties. A well-established fabrication process involves the supramolecular assembly of organic molecules (e.g., block copolymers and surfactants) with inorganic materials obtained by sol-gel chemistry. Typically, subsequent calcination in air removes the organic template and reveals the porous inorganic network. A significant challenge for such coatings is the anisotropic shrinkage due to the volume contraction related to solvent evaporation, inorganic condensation, and template removal, affecting the final porosity as well as pore shape, size, arrangement, and accessibility. Here, we show that a two-step calcination process, composed of high-temperature treatment in argon followed by air calcination, is an effective fabrication strategy to reduce film contraction and enhance structural control of mesoporous thin films. Crucially, the formation of a transient carbonaceous scaffold enables the inorganic matrix to fully condense before template removal. The resulting mesoporous films retain a higher porosity as well as bigger pores with extended porous order. Such films present favorable characteristics for mass transport of large molecules. This is demonstrated for lysozyme adsorption into the mesoporous thin films as an example of enzyme storage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA