Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Neurosci ; 24(27): 6115-26, 2004 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-15240803

RESUMEN

Expression of metabotropic GABA(B) receptors is essential for slow inhibitory synaptic transmission in the CNS, and disruption of GABA(B) receptor-mediated responses has been associated with several disorders, including neuropathic pain and epilepsy. The location of GABA(B) receptors in neurons determines their specific role in synaptic transmission, and it is believed that sorting of subunit isoforms, GABA(B)R1a and GABA(B)R1b, to presynaptic or postsynaptic membranes helps to determine this role. GABA(B)R1a and GABA(B)R1b are thought to arise by alternative splicing of heteronuclear RNA. We now demonstrate that alternative promoters, rather than alternative splicing, produce GABA(B)R1a and GABA(B)R1b isoforms. Our data further show that subunit gene expression in hippocampal neurons is mediated by the cAMP response element-binding protein (CREB) by binding to unique cAMP response elements in the alternative promoter regions. Double-stranded oligonucleotide decoys selectively alter levels of endogenous GABA(B)R1a and GABA(B)R1b in primary hippocampal neurons, and CREB knock-out mice show changes in levels of GABA(B)R1a and GABA(B)R1b transcripts, consistent with decoy competition experiments. These results demonstrate a critical role of CREB in transcriptional mechanisms that control GABA(B)R1 subunit levels in vivo. In addition, the CREB-related factor activating transcription factor-4 (ATF4) has been shown to interact directly with GABA(B)R1 in neurons, and we show that ATF4 differentially regulates GABA(B)R1a and GABA(B)R1b promoter activity. These results, together with our finding that the depolarization-sensitive upstream stimulatory factor (USF) binds to a composite CREB/ATF4/USF regulatory element only in the absence of CREB binding, indicate that selective control of alternative GABA(B)R1 promoters by CREB, ATF4, and USF may dynamically regulate expression of their gene products in the nervous system.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas de Unión al ADN/metabolismo , Hipocampo/metabolismo , Receptores de GABA-B/genética , Secuencias Reguladoras de Ácidos Nucleicos/fisiología , Factores de Transcripción/metabolismo , Regiones no Traducidas 5' , Factor de Transcripción Activador 4 , Animales , Células Cultivadas , Islas de CpG , Exones , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/fisiología , Hipocampo/citología , Humanos , Neuronas/metabolismo , Regiones Promotoras Genéticas/genética , Regiones Promotoras Genéticas/fisiología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratas , Receptores de GABA-B/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Transcripción Genética/fisiología , Factores Estimuladores hacia 5'
2.
Pharmacol Ther ; 101(3): 259-81, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15031002

RESUMEN

The type A gamma-aminobutyric acid (GABA(A)) receptors mediate the majority of fast inhibitory neurotransmission in the CNS, and alterations in GABA(A) receptor function is believed to be involved in the pathology of several neurological and psychiatric illnesses, such as epilepsy, anxiety, Alzheimer's disease, and schizophrenia. GABA(A) receptors can be assembled from eight distinct subunit families defined by sequence similarity: alpha(1-6), beta(1-3), gamma(1-3), delta, pi, theta, and rho(1-3). The regulation of GABA(A) receptor function in the brain is a highly compensating system, influencing both the number and the composition of receptors at the cell surface. While transcriptional and translational points of control operate in parallel, it is becoming increasingly evident that many functional changes in GABA(A) receptors reflect the differential gene regulation of its subunits. The fact that certain GABA(A) receptor subunit genes are transcribed in distinct cell types during specific periods of development strongly suggests that genetic control plays a major role in the choice of subunit variants available for receptor assembly. This review focuses on the physiological conditions that alter subunit mRNA levels, the promoters that may control such levels, and the use of a conceptual framework created by bioinformatics to study coordinate and independent GABA(A) receptor subunit gene regulation. As this exciting field moves closer to identifying the language hidden inside the chromatin of GABA(A) receptor subunit gene clusters, future experiments will be aimed at testing models generated by computational analysis with biologically relevant in vivo and in vitro assays. It is hoped that through this functional genomic approach there will be the identification of new targets for therapeutic intervention.


Asunto(s)
Cognición/fisiología , ARN Mensajero/fisiología , Receptores de GABA-A/fisiología , Factores de Transcripción/genética , Animales , Encéfalo/metabolismo , Mapeo Cromosómico , Regulación de la Expresión Génica , Humanos , Enfermedades Neurodegenerativas/metabolismo , Regiones Promotoras Genéticas , Subunidades de Proteína/biosíntesis , Subunidades de Proteína/genética , Subunidades de Proteína/fisiología , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Receptores de GABA-A/biosíntesis , Receptores de GABA-A/genética , Elementos de Respuesta
3.
PLoS One ; 10(9): e0138486, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26378449

RESUMEN

Death Receptor 5 (DR5) agonists demonstrate anti-tumor activity in preclinical models but have yet to demonstrate robust clinical responses. A key limitation may be the lack of patient selection strategies to identify those most likely to respond to treatment. To overcome this limitation, we screened a DR5 agonist Nanobody across >600 cell lines representing 21 tumor lineages and assessed molecular features associated with response. High expression of DR5 and Casp8 were significantly associated with sensitivity, but their expression thresholds were difficult to translate due to low dynamic ranges. To address the translational challenge of establishing thresholds of gene expression, we developed a classifier based on ratios of genes that predicted response across lineages. The ratio classifier outperformed the DR5+Casp8 classifier, as well as standard approaches for feature selection and classification using genes, instead of ratios. This classifier was independently validated using 11 primary patient-derived pancreatic xenograft models showing perfect predictions as well as a striking linearity between prediction probability and anti-tumor response. A network analysis of the genes in the ratio classifier captured important biological relationships mediating drug response, specifically identifying key positive and negative regulators of DR5 mediated apoptosis, including DR5, CASP8, BID, cFLIP, XIAP and PEA15. Importantly, the ratio classifier shows translatability across gene expression platforms (from Affymetrix microarrays to RNA-seq) and across model systems (in vitro to in vivo). Our approach of using gene expression ratios presents a robust and novel method for constructing translatable biomarkers of compound response, which can also probe the underlying biology of treatment response.


Asunto(s)
Linaje de la Célula/genética , Regulación Neoplásica de la Expresión Génica/genética , Expresión Génica/genética , Neoplasias Pancreáticas/genética , Biosíntesis de Proteínas/genética , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Animales , Apoptosis/genética , Caspasa 8/genética , Línea Celular Tumoral , Humanos , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
4.
J Comp Neurol ; 473(1): 16-29, 2004 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-15067715

RESUMEN

gamma-Aminobutyric acid type B receptors (GABA(B)Rs) mediate both slow inhibitory synaptic activity in the adult nervous system and motility signals for migrating embryonic cortical cells. Previous papers have described the expression of GABA(B)Rs in the adult brain, but the expression and functional significance of these gene products in the embryo are largely unknown. Here we examine GABA(B)R expression from rat embryonic day 10 (E10) to E18 compared with adult and ask whether embryonic cortical neurons contain functional GABA(B)R. GABA(B)R1 transcript levels greatly exceed GABA(B)R2 levels in the developing neural tube at E11, and olfactory bulb and striatum at E17 but equalize in most regions of adult nervous tissue, except for the glomerular and granule cell layers of the main olfactory bulb and the striatum. Consistent with expression differences, the binding affinity of GABA for GABA(B)Rs is significantly lower in adult striatum compared with cerebellum. Multiple lines of evidence from in situ hybridization, RNase protection, and real-time PCR demonstrate that GABA(B)R1a, GABA(B)R1b, GABA(B)R1h (a subunit subtype, lacking a sushi domain, that we have identified in embryonic rat brain), GABA(B)R2, and GABA(B)L transcript levels are not coordinately regulated. Despite the functional requirement for a heterodimer of GABA(B)R subunits, the expression of each subunit mRNA is under independent control during embryonic development, and, by E18, GABA(B)Rs are negatively coupled to adenylyl cyclase in neocortical neurons. The presence of embryonic GABA(B)R transcripts and protein and functional receptor coupling indicates potentially important roles for GABA(B)Rs in modulation of synaptic transmission in the developing embryonic nervous system.


Asunto(s)
Adenilil Ciclasas/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Sistema Nervioso/citología , Neuronas/fisiología , Subunidades de Proteína/metabolismo , Receptores de GABA-B/metabolismo , 1-Metil-3-Isobutilxantina/farmacología , Animales , Baclofeno/farmacología , Sitios de Unión , Western Blotting/métodos , Células COS/metabolismo , Chlorocebus aethiops , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Embrión de Mamíferos , Agonistas del GABA/farmacología , Hibridación in Situ/métodos , Concentración 50 Inhibidora , Masculino , Sistema Nervioso/embriología , Neuronas/efectos de los fármacos , Compuestos Organofosforados/farmacocinética , Compuestos Organofosforados/farmacología , Inhibidores de Fosfodiesterasa/farmacología , Subunidades de Proteína/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de GABA-B/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Transfección , Tritio/farmacocinética , Ácido gamma-Aminobutírico/farmacología
5.
Neuroreport ; 14(13): 1731-5, 2003 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-14512847

RESUMEN

Exposure of pregnant rats to protein malnutrition throughout pregnancy alters the developing hippocampus, leading to increased inhibition and selective changes in hippocampal-mediated behaviors. Given that GABA mediates most inhibitory neurotransmission, we asked whether selective changes in the levels of GABA receptor subunit mRNAs might result. Quantitative RNase protection profiling of 12 GABAA and GABAB receptor subunit mRNAs show that alpha1 and beta2 decrease in the adult (P90) hippocampal formation of prenatally malnourished rats, while the levels of alpha3 are increased. Moreover, the distribution of alpha1, alpha3 and beta2 mRNAs remains unchanged in CA1 and CA3 hippocampal subfields relative to dentate gyrus. The data suggest that prenatal malnutrition produces global changes of certain GABAA, but not GABAB, receptor mRNAs in the hippocampal formation.


Asunto(s)
Hipocampo/metabolismo , Desnutrición/metabolismo , Efectos Tardíos de la Exposición Prenatal , Receptores de GABA-A/metabolismo , Receptores de GABA-B/metabolismo , Animales , Giro Dentado/metabolismo , Femenino , Hibridación in Situ , Masculino , Embarazo , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de GABA-A/genética , Receptores de GABA-B/genética
6.
Eur J Pharmacol ; 446(1-3): 201-2, 2002 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-12098603

RESUMEN

Rats exposed to prenatal protein malnutrition are less sensitive to the amnestic effects of chlordiazepoxide when administered directly into the medial septum. Here we report that prenatal malnutrition selectively decreases gamma-aminobutyric acid A (GABA(A)) receptor gamma(2L) mRNA levels in the medial septum, consistent with malnutrition-induced decreases in the amnestic effects of chlordiazepoxide infusion. In the lateral septum, beta(2) and beta(3) mRNA levels are also decreased, suggesting that prenatal malnutrition alters GABA(A) receptor gene expression in the septal complex.


Asunto(s)
Insuficiencia Placentaria/metabolismo , ARN Mensajero/metabolismo , Receptores de GABA-A/metabolismo , Tabique del Cerebro/metabolismo , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica , Embarazo , Subunidades de Proteína , Ratas , Receptores de GABA-A/genética
7.
Cancer Res ; 74(12): 3294-305, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24747911

RESUMEN

Tankyrases (TNKS) play roles in Wnt signaling, telomere homeostasis, and mitosis, offering attractive targets for anticancer treatment. Using unbiased combination screening in a large panel of cancer cell lines, we have identified a strong synergy between TNKS and MEK inhibitors (MEKi) in KRAS-mutant cancer cells. Our study uncovers a novel function of TNKS in the relief of a feedback loop induced by MEK inhibition on FGFR2 signaling pathway. Moreover, dual inhibition of TNKS and MEK leads to more robust apoptosis and antitumor activity both in vitro and in vivo than effects observed by previously reported MEKi combinations. Altogether, our results show how a novel combination of TNKS and MEK inhibitors can be highly effective in targeting KRAS-mutant cancers by suppressing a newly discovered resistance mechanism.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Proteínas Proto-Oncogénicas/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Tanquirasas/metabolismo , Proteínas ras/genética , Acetamidas/administración & dosificación , Aminopiridinas/administración & dosificación , Compuestos de Anilina/administración & dosificación , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Línea Celular Tumoral , Sinergismo Farmacológico , Clorhidrato de Erlotinib , Retroalimentación Fisiológica , Femenino , Humanos , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Quinasas Quinasa Quinasa PAM/metabolismo , Ratones , Ratones Desnudos , Morfolinas/administración & dosificación , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas p21(ras) , Pirimidinonas/administración & dosificación , Quinazolinas/administración & dosificación , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Transducción de Señal , Sulfonamidas/administración & dosificación , Tanquirasas/antagonistas & inhibidores , Tiazoles/administración & dosificación , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA