Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 87(13): e0043321, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-33858836

RESUMEN

Wastewater-based monitoring for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at the individual building level could be an efficient, passive means of early detection of new cases in congregate living settings, but this approach has not been validated. Preliminary samples were collected from a hospital and a local municipal wastewater treatment plant. Molecular diagnostic methods were compared side by side to assess feasibility, performance, and sensitivity. Refined sample collection and processing protocols were then used to monitor two occupied dormitory complexes (n = 105 and 66) over 8 weeks. Wastewater results were validated using known case counts from external clinical testing of building occupants. Results confirm that ultracentrifugation from a 24-h composite collection had a sensitivity of 96.2% and a specificity of 100%. However, the method could not distinguish new infectious cases from persistent convalescent shedding of SARS-CoV-2 RNA. If the detection of convalescent shedding is considered a false positive, then the sensitivity is 100% and specificity drops to 45%. It was determined that the proposed approach constitutes a highly sensitive wastewater surveillance method for detecting SARS-CoV-2, but it could not distinguish new infectious cases from persistent convalescent shedding. Future work must focus on approaches to distinguish new infections from convalescent shedding to fully realize the potential of building wastewater as a surveillance tool for congregate living. IMPORTANCE Some of the most severe outbreaks of COVID-19 have taken place in places where persons live together, such as nursing homes. Wastewater testing from individual buildings could be used for frequent pooled surveillance of virus from all occupants, including those who are contagious, with or without symptoms. This work provides a sensitive practical method for detecting infected individuals, as validated in two building complexes housing occupants who underwent frequent clinical testing performed by external entities. Although this sensitive method could be deployed now for pooled surveillance as an early warning system to limit outbreaks, the study shows that the approach will require further refinement to differentiate contagious, newly infected individuals from persons who have persistent viral fragments shedding in their stool outside the contagious period.


Asunto(s)
COVID-19/epidemiología , Instituciones Residenciales , SARS-CoV-2/aislamiento & purificación , Aguas Residuales/virología , COVID-19/diagnóstico , Humanos , Técnicas de Diagnóstico Molecular , Reproducibilidad de los Resultados , SARS-CoV-2/genética , Monitoreo Epidemiológico Basado en Aguas Residuales
2.
Mol Metab ; 44: 101130, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33248294

RESUMEN

OBJECTIVE: Brown adipose tissue (BAT) is specialized in thermogenesis. The conversion of energy into heat in brown adipocytes proceeds via stimulation of ß-adrenergic receptor (ßAR)-dependent signaling and activation of mitochondrial uncoupling protein 1 (UCP1). We have previously demonstrated a functional role for pannexin-1 (Panx1) channels in white adipose tissue; however, it is not known whether Panx1 channels play a role in the regulation of brown adipocyte function. Here, we tested the hypothesis that Panx1 channels are involved in brown adipocyte activation and thermogenesis. METHODS: In an immortalized brown pre-adipocytes cell line, Panx1 currents were measured using patch-clamp electrophysiology. Flow cytometry was used for assessment of dye uptake and luminescence assays for adenosine triphosphate (ATP) release, and cellular temperature measurement was performed using a ratiometric fluorescence thermometer. We used RNA interference and expression plasmids to manipulate expression of wild-type and mutant Panx1. We used previously described adipocyte-specific Panx1 knockout mice (Panx1Adip-/-) and generated brown adipocyte-specific Panx1 knockout mice (Panx1BAT-/-) to study pharmacological or cold-induced thermogenesis. Glucose uptake into brown adipose tissue was quantified by positron emission tomography (PET) analysis of 18F-fluorodeoxyglucose (18F-FDG) content. BAT temperature was measured using an implantable telemetric temperature probe. RESULTS: In brown adipocytes, Panx1 channel activity was induced either by apoptosis-dependent caspase activation or by ß3AR stimulation via a novel mechanism that involves Gßγ subunit binding to Panx1. Inactivation of Panx1 channels in cultured brown adipocytes resulted in inhibition of ß3AR-induced lipolysis, UCP-1 expression, and cellular thermogenesis. In mice, adiponectin-Cre-dependent genetic deletion of Panx1 in all adipose tissue depots resulted in defective ß3AR agonist- or cold-induced thermogenesis in BAT and suppressed beigeing of white adipose tissue. UCP1-Cre-dependent Panx1 deletion specifically in brown adipocytes reduced the capacity for adaptive thermogenesis without affecting beigeing of white adipose tissue and aggravated diet-induced obesity and insulin resistance. CONCLUSIONS: These data demonstrate that Gßγ-dependent Panx1 channel activation is involved in ß3AR-induced thermogenic regulation in brown adipocytes. Identification of Panx1 channels in BAT as novel thermo-regulatory elements downstream of ß3AR activation may have therapeutic implications.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Conexinas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Termogénesis/fisiología , Adipocitos Marrones/metabolismo , Adiponectina/metabolismo , Tejido Adiposo Pardo/patología , Tejido Adiposo Blanco/metabolismo , Animales , Frío , Conexinas/genética , Fluorodesoxiglucosa F18 , Resistencia a la Insulina , Lipólisis , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Obesidad/metabolismo , Transducción de Señal , Termogénesis/genética , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA