Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Ecol ; 33(5): e17267, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38230446

RESUMEN

The range-expansion of tropical herbivores due to ocean warming can profoundly alter temperate reef communities by overgrazing the seaweed forests that underpin them. Such ecological interactions may be mediated by changes to seaweed-associated microbiota in response to warming, but empirical evidence demonstrating this is rare. We experimentally simulated ocean warming and marine heatwaves (MHWs) to quantify effects on two dominant temperate seaweed species and their microbiota, as well as grazing by a tropical herbivore. The kelp Ecklonia radiata's microbiota in sustained warming and MHW treatments was enriched with microorganisms associated with seaweed disease and tissue degradation. In contrast, the fucoid Sargassum linearifolium's microbiota was unaffected by temperature. Consumption by the tropical sea-urchin Tripneustes gratilla was greater on Ecklonia where the microbiota had been altered by higher temperatures, while Sargassum's consumption was unaffected. Elemental traits (carbon, nitrogen), chemical defences (phenolics) and tissue bleaching of both seaweeds were generally unaffected by temperature. Effects of warming and MHWs on seaweed holobionts (host plus its microbiota) are likely species-specific. The effect of increased temperature on Ecklonia's microbiota and subsequent increased consumption suggest that changes to kelp microbiota may underpin kelp-herbivore interactions, providing novel insights into potential mechanisms driving change in species' interactions in warming oceans.


Asunto(s)
Kelp , Microbiota , Algas Marinas , Kelp/fisiología , Ecosistema , Cambio Climático , Océanos y Mares
2.
J Environ Manage ; 354: 120370, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38387353

RESUMEN

Habitat complexity is widely considered an important determinant of biodiversity, and enhancing complexity can play a key role in restoring degraded habitats. However, the effects of habitat complexity on ecosystem functioning - as opposed to biodiversity and community structure - are relatively poorly understood for artificial habitats, which dominate many coastlines. With Greening of Grey Infrastructure (GGI) approaches, or eco-engineering, increasingly being applied around the globe, it is important to understand the effects that modifying habitat complexity has on both biodiversity and ecological functioning in these highly modified habitats. We assessed how manipulating physical (primary substrate) and/or biogenic habitat (bivalves) complexity on intertidal artificial substrata affected filtration rates, net and gross primary productivity (NPP and GPP, respectively) and community respiration (CR) - as well as abundance of filter feeders and macro-algae and habitat use by cryptobenthic fish across six locations in three continents. We manipulated both physical and biogenic complexity using 1) flat or ridged (2.5 cm or 5 cm) settlement tiles that were either 2) unseeded or seeded with oysters or mussels. Across all locations, increasing physical and biogenic complexity (5 cm seeded tiles) had a significant effect on most ecological functioning variables, increasing overall filtration rates and community respiration of the assemblages on tiles but decreasing productivity (both GPP and NPP) across all locations. There were no overall effects of increasing either type of habitat complexity on cryptobenthic fish MaxN, total time in frame or macro-algal cover. Within each location, there were marked differences in the effects of habitat complexity. In Hobart, we found higher filtration, filter feeder biomass and community respiration on 5 cm tiles compared to flat tiles. However, at this location, both macro-algae cover and GPP decreased with increasing physical complexity. Similarly in Dublin, filtration, filter feeder biomass and community respiration were higher on 5 cm tiles compared to less complex tiles. In Sydney, filtration and filter feeder biomass were higher on seeded than unseeded tiles, and fish MaxN was higher on 5 cm tiles compared to flat tiles. On unseeded tiles in Sydney, filter feeder biomass also increased with increasing physical complexity. Our findings suggest that GGI solutions via increased habitat complexity are likely to have trade-offs among potentially desired functions, such as productivity and filtration rates, and variable effects on cryptobenthic fish communities. Importantly, our results show that the effects of GGI practices can vary markedly according to the environmental context and therefore should not be blindly and uniformly applied across the globe.


Asunto(s)
Ecosistema , Ostreidae , Animales , Biodiversidad , Biomasa , Peces
3.
Environ Microbiol ; 25(6): 1084-1098, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36700447

RESUMEN

Bacterioplankton communities govern marine productivity and biogeochemical cycling, yet drivers of bacterioplankton assembly remain unclear. Here, we contrast the relative contribution of deterministic processes (environmental factors and biotic interactions) in driving temporal dynamics of bacterioplankton diversity at three different oceanographic time series locations, spanning 15° of latitude, which are each characterized by different environmental conditions and varying degrees of seasonality. Monthly surface samples (5.5 years) were analysed using 16S rRNA amplicon sequencing. The high- and mid-latitude sites of Maria Island and Port Hacking were characterized by high and intermediate levels of environmental heterogeneity, respectively, with both alpha diversity (72%; 24% of total variation) and beta diversity (32%; 30%) patterns within bacterioplankton assemblages explained by day length, ammonium, and mixed layer depth. In contrast, North Stradbroke Island, a sub-tropical location where environmental conditions are less variable, interspecific interactions were of increased importance in structuring bacterioplankton diversity (alpha: 33%; beta: 26%) with environment only contributing 11% and 13% to predicting diversity, respectively. Our results demonstrate that bacterioplankton diversity is the result of both deterministic environmental and biotic processes and that the importance of these different deterministic processes varies, potential in response to environmental heterogeneity.


Asunto(s)
Organismos Acuáticos , Ecosistema , ARN Ribosómico 16S/genética , Plancton/genética
4.
Mol Ecol ; 32(16): 4584-4598, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37332135

RESUMEN

A fundamental question in holobiont biology is the extent to which microbiomes are determined by host characteristics regulated by their genotype. Studies on the interactions of host genotype and microbiomes are emerging but disentangling the role that host genotype has in shaping microbiomes remains challenging in natural settings. Host genotypes tend to be segregated in space and affected by different environments. Here we overcome this challenge by studying an unusual situation where host asexual (5 clonal lineages) and sexual genotypes (15 non-clonal lineages) of the same species co-occur under the same environment. This allowed us to partition the influence of morphological traits and genotype in shaping host-associated bacterial communities. Lamina-associated bacteria of co-occurring kelp sexual non-clonal (Ecklonia radiata) and asexual clonal (E. brevipes) morphs were compared to test whether host genotype influences microbiomes beyond morphology. Similarity of bacterial composition and predicted functions were evaluated among individuals within a single clonal genotype or among non-clonal genotypes of each morph. Higher similarity in bacterial composition and inferred functions were found among identical clones of E. brevipes compared to other clonal genotypes or unique non-clonal E. radiata genotypes. Additionally, bacterial diversity and composition differed significantly between the two morphs and were related with one morphological trait in E. brevipes (haptera). Thus, factors regulated by the host genotype (e.g. secondary metabolite production) likely drive differences in microbial communities between morphs. The strong association of genotype and microbiome found here highlights the importance of genetic relatedness of hosts in determining variability in their bacterial symbionts.


Asunto(s)
Kelp , Microbiota , Humanos , Kelp/genética , Microbiota/genética , Genotipo
5.
Microbiology (Reading) ; 168(4)2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35416764

RESUMEN

Antarctic sea-ice forms a complex and dynamic system that drives many ecological processes in the Southern Ocean. Sea-ice microalgae and their associated microbial communities are understood to influence nutrient flow and allocation in marine polar environments. Sea-ice microalgae and their microbiota can have high seasonal and regional (>1000 km2) compositional and abundance variation, driven by factors modulating their growth, symbiotic interactions and function. In contrast, our knowledge of small-scale variation in these communities is limited. Understanding variation across multiple scales and its potential drivers is critical for informing on how multiple stressors impact sea-ice communities and the functions they provide. Here, we characterized bacterial communities associated with sea-ice microalgae and the potential drivers that influence their variation across a range of spatial scales (metres to >10 kms) in a previously understudied area in Commonwealth Bay, East Antarctica where anomalous events have substantially and rapidly expanded local sea-ice coverage. We found a higher abundance and different composition of bacterial communities living in sea-ice microalgae closer to the shore compared to those further from the coast. Variation in community structure increased linearly with distance between samples. Ice thickness and depth to the seabed were found to be poor predictors of these communities. Further research on the small-scale environmental drivers influencing these communities is needed to fully understand how large-scale regional events can affect local function and ecosystem processes.


Asunto(s)
Microalgas , Microbiota , Regiones Antárticas , Bahías , Ecosistema , Cubierta de Hielo
6.
Mol Ecol ; 31(7): 2189-2206, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35104026

RESUMEN

Interactions between hosts and their microbiota are vital to the functioning and resilience of macro-organisms. Critically, for hosts that play foundational roles in communities, understanding what drives host-microbiota interactions is essential for informing ecosystem restoration and conservation. We investigated the relative influence of host traits and the surrounding environment on microbial communities associated with the foundational seaweed Phyllospora comosa. We quantified 16 morphological and functional phenotypic traits, including host genetics (using 354 single nucleotide polymorphisms) and surface-associated microbial communities (using 16S rRNA gene amplicon sequencing) from 160 individuals sampled from eight sites spanning Phyllospora's entire latitudinal distribution (1,300 km). Combined, these factors explained 54% of the overall variation in Phyllospora's associated microbial community structure, much of which was related to the local environment (~32%). We found that putative "core" microbial taxa (i.e., present on all Phyllospora individuals sampled) exhibited slightly higher associations with host traits when compared to "variable" taxa (not present on all individuals). We identified several key genetic loci and phenotypic traits in Phyllospora that were strongly related to multiple microbial amplicon sequence variants, including taxa with known associations to seaweed defence, disease and tissue degradation. This information on how host-associated microbial communities vary with host traits and the environment enhances our current understanding of how "holobionts" (hosts plus their microbiota) are structured. Such understanding can be used to inform management strategies of these important and vulnerable habitats.


Asunto(s)
Microbiota , Phaeophyceae , Algas Marinas , Geografía , Microbiota/genética , Phaeophyceae/genética , Fenotipo , ARN Ribosómico 16S/genética , Algas Marinas/genética
7.
Conserv Biol ; 36(2): e13815, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34342040

RESUMEN

Preserving biodiversity over time is a pressing challenge for conservation science. A key goal of marine protected areas (MPAs) is to maintain stability in species composition, via reduced turnover, to support ecosystem function. Yet, this stability is rarely measured directly under different levels of protection. Rather, evaluations of MPA efficacy generally consist of static measures of abundance, species richness, and biomass, and rare measures of turnover are limited to short-term studies involving pairwise (beta diversity) comparisons. Zeta diversity is a recently developed metric of turnover that allows for measurement of compositional similarity across multiple assemblages and thus provides more comprehensive estimates of turnover. We evaluated the effectiveness of MPAs at preserving fish zeta diversity across a network of marine reserves over 10 years in Batemans Marine Park, Australia. Snorkel transect surveys were conducted across multiple replicated and spatially interspersed sites to record fish species occurrence through time. Protection provided by MPAs conferred greater stability in fish species turnover. Marine protected areas had significantly shallower decline in zeta diversity compared with partially protected and unprotected areas. The retention of harvested species was four to six times greater in MPAs compared with partially protected and unprotected areas, and the stabilizing effects of protection were observable within 4 years of park implementation. Conversely, partial protection offered little to no improvement in stability, compared with unprotected areas. These findings support the efficacy of MPAs for preserving temporal fish diversity stability. The implementation of MPAs helps stabilize fish diversity and may, therefore, support biodiversity resilience under ongoing environmental change.


Impactos de las Áreas Protegidas Marinas sobre la Estabilidad Temporal de la Diversidad de Especies de Peces Resumen A medida que avanza el tiempo, la conservación de la biodiversidad es un reto apremiante para las ciencias de la conservación. Un objetivo importante de las áreas marinas protegidas (AMP) es mantener la estabilidad de la composición de especies, por medio de rotaciones reducidas, para así ayudar a la función del ecosistema. Sin embargo, esta estabilidad casi no se mide directamente bajo diferentes niveles de protección. En su lugar, las evaluaciones de eficiencia de las AMP generalmente consisten en medidas estáticas de abundancia, riqueza de especies y biomasa, y las pocas medidas de la rotación están limitadas a los estudios a corto plazo que involucran comparaciones por pares (diversidad beta). La diversidad zeta es una medida recientemente desarrollada de la rotación, la cual permite la medición de las similitudes en la composición en múltiples ensamblajes, proporcionando así estimaciones más completas de la rotación. Evaluamos la efectividad que tienen las AMP en la conservación de la diversidad zeta de los peces en una red de reservas marinas durante diez años en el Parque Marino Bateman, Australia. Se realizaron censos en transecto con snorkel en varios sitios replicados e intercalados espacialmente para registrar la presencia de especies de peces a lo largo del tiempo. La protección proporcionada por las AMP otorgó una mayor estabilidad en la rotación de especies de peces. Las áreas marinas protegidas tuvieron una declinación significativamente más baja de la diversidad zeta que las áreas parcialmente protegidas o desprotegidas. La retención de especies pescadas fue 4-6 veces mayor en las AMP que en las áreas desprotegidas o parcialmente protegidas, y los efectos estabilizadores de la protección fueron observables a partir de cuatro años de la implementación del parque. De manera opuesta, la protección parcial ofreció poca o ninguna estabilidad, comparada con las áreas desprotegidas. Estos descubrimientos respaldan la eficiencia que tienen las AMP en la conservación de la estabilidad temporal de la diversidad de especies de peces. La implementación de las AMP ayuda a estabilizar la diversidad de peces y por lo tanto puede fomentar la resiliencia de la biodiversidad frente al cambio ambiental en curso.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Animales , Australia , Biodiversidad , Peces
8.
Glob Chang Biol ; 27(10): 2200-2212, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33511779

RESUMEN

Globally, critical habitats are in decline, threatening ecological, economic and social values and prompting calls for 'future proofing' efforts that enhance resilience to climate change. Such efforts rely on predicting how neutral and adaptive genomic patterns across a species' distribution will change under future climate scenarios, but data is scant for most species of conservation concern. Here, we use seascape genomics to characterise genetic diversity, structure and gene-environmental associations in a dominant forest-forming seaweed, Phyllospora comosa, along its entire latitudinal (12° latitude), and thermal (~14°C) range. Phyllospora showed high connectivity throughout its central range, with evidence of genetic structure and potential selection associated with sea surface temperatures (SSTs) at its rear and leading edges. Rear and leading-edge populations harboured only half the genetic diversity of central populations. By modelling genetic turnover as a function of SST, we assessed the genomic vulnerability across Phyllospora's distributional range under climate change scenarios. Despite low diversity, range-edge populations were predicted to harbour beneficial adaptations to marginal conditions and overall adaptability of the species may be compromised by their loss. Assisted gene flow from range edge populations may be required to enhance adaptation and increase resilience of central and leading-edge populations under warming oceans. Understanding genomic vulnerability can inform proactive restoration and future-proofing strategies for underwater forests and ensure their persistence in changing oceans.


Asunto(s)
Algas Marinas , Australia , Cambio Climático , Bosques , Genómica , Océanos y Mares
9.
Glob Chang Biol ; 27(11): 2537-2548, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33694271

RESUMEN

Climate-mediated species redistributions are causing novel interactions and leading to profound regime shifts globally. For species that expand their distribution in response to warming, survival depends not only on their physiological capacity, but also on the ability to coexist or be competitive within the established community. In temperate marine reefs from around the world, the range expansion of tropical species, known as 'tropicalization', has been linked to the disappearance of temperate habitat-forming kelps and shifts to dominance by low-biomass turfing algae. The consequences of these range expansions and habitat changes on resident fish communities are, however, unclear. Here, we use data derived from baited remote underwater video (BRUV) surveys to analyse changes in diversity and abundance of marine fishes over a 17-year period in warming reefs that have experienced kelp loss (occurring c. 2009). Despite the loss of kelp, we found that species richness and overall abundance of fishes (measured as probability of occurrence and relative abundance), including both tropical and temperate species, increased through time. We also found dramatic shifts in the trophic composition of fish assemblages. Tropical herbivorous fish increased most markedly through time, and temperate-associated planktivores were the only group that declined, a potential consequence of tropicalization not previously identified. At the species level, we identified 22 tropical and temperate species from four trophic guilds that significantly increased in occurrence, while only three species (all temperate associated) declined. Morphological trait space models suggest increases in fish diversity and overall occurrence are unlikely to be driven by uniqueness of traits among tropical range expanders. Our results show more winners than losers and suggest that pathways of energy flow will change in tropicalized systems, as planktonic inputs become less important and a higher proportion of algal productivity gets consumed locally by increasingly abundant herbivores.


Asunto(s)
Kelp , Animales , Biomasa , Arrecifes de Coral , Ecosistema , Peces , Herbivoria
10.
J Phycol ; 57(5): 1504-1516, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33942303

RESUMEN

Infectious diseases affecting habitat-forming species can have significant impacts on population dynamics and alter the structure and functioning of marine ecosystems. Recently, a fungal infection was described as the causative agent of necrotic lesions on the stipe of the forest-forming macroalga Phyllospora comosa, a disease named "stipe rot" (SR). Here, we developed a quantitative PCR (qPCR) method for rapid detection and quantification of this pathogen, which was applied to evaluate the level of SR infection in eight P. comosa populations spanning the entire latitudinal distribution of this species along southeastern Australia. We also investigated the relationship between the abundance and prevalence of Stipe Rot Fungus (SRF) and potential host chemical defenses as well as its relationship with morphological and ecophysiological traits of P. comosa. qPCR estimates of SRF abundance reflected the levels of infection estimated by visual assessment, with higher numbers of SRF copies being observed in individuals showing high or intermediate levels of visual symptoms of SR. Concordance of conventional PCR and visual assessments was 92 and 94%, respectively, compared to qPCR detection. SRF prevalence was positively related to fucoxanthin content and herbivory, but not significant related to other traits measured (phlorotannin content, total length, thallus diameter, stipe width, number of branches, frond width, fouling, bleaching, gender, and photosynthetic efficiency). These results provide confidence for previous reports of this disease based upon visual assessments only, contribute to the development of monitoring and conservation strategies for safeguarding P. comosa forests, and generate insights into potential factors influencing host-pathogen interactions in this system.


Asunto(s)
Hongos/patogenicidad , Phaeophyceae , Algas Marinas , Ecosistema , Herbivoria , Phaeophyceae/microbiología , Algas Marinas/microbiología
11.
Environ Microbiol ; 21(6): 1929-1941, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-29971921

RESUMEN

Viruses are ubiquitous, abundant and play an important role in all ecosystems. Here, we advance understanding of coastal sediment viruses by exploring links in the composition and abundance of sediment viromes to environmental stressors and sediment bacterial communities. We collected sediment from contaminated and reference sites in Sydney Harbour and used metagenomics to analyse viral community composition. The proportion of phages at contaminated sites was significantly greater than phages at reference sites, whereas eukaryotic viruses were relatively more abundant at reference sites. We observed shifts in viral and bacterial composition between contaminated and reference sites of a similar magnitude. Models based on sediment characteristics revealed that total organic carbon in the sediments explained most of the environmental stress-related variation in the viral dataset. Our results suggest that the presence of anthropogenic contaminants in coastal sediments could be influencing viral community composition with potential consequences for associated hosts and the environment.


Asunto(s)
Bacteriófagos/aislamiento & purificación , Sedimentos Geológicos/virología , Bacterias/virología , Bacteriófagos/clasificación , Bacteriófagos/genética , Ecosistema , Monitoreo del Ambiente , Eucariontes/virología , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiología , Metagenómica , Filogenia , Contaminación del Agua/análisis
12.
Environ Microbiol ; 21(1): 389-401, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30411468

RESUMEN

Microbially mediated biogeochemical processes are crucial for climate regulation and may be disrupted by anthropogenic contaminants. To better manage contaminants, we need tools that make real-time causal links between stressors and altered microbial functions, and the potential consequences for ecosystem services such as climate regulation. In a manipulative field experiment, we used metatranscriptomics to investigate the impact of excess organic enrichment and metal contamination on the gene expression of nitrogen and sulfur metabolisms in coastal sediments. Our gene expression data suggest that excess organic enrichment results in (i) higher transcript levels of genes involved in the production of toxic ammonia and hydrogen sulfide and (ii) lower transcript levels associated with the degradation of a greenhouse gas (nitrous oxide). However, metal contamination did not have any significant impact on gene expression. We reveal the genetic mechanisms that may lead to altered productivity and greenhouse gas production in coastal sediments due to anthropogenic contaminants. Our data highlight the applicability of metatranscriptomics as a management tool that provides an immense breadth of information and can identify potentially impacted process measurements that need further investigation.


Asunto(s)
Bacterias/metabolismo , Clima , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiología , Gases de Efecto Invernadero/metabolismo , Amoníaco/metabolismo , Ecosistema , Sulfuro de Hidrógeno/metabolismo , Metales/análisis , Nitrógeno/metabolismo , Óxido Nitroso/metabolismo
13.
Proc Biol Sci ; 286(1896): 20181887, 2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30963929

RESUMEN

Climate change is driving global declines of marine habitat-forming species through physiological effects and through changes to ecological interactions, with projected trajectories for ocean warming and acidification likely to exacerbate such impacts in coming decades. Interactions between habitat-formers and their microbiomes are fundamental for host functioning and resilience, but how such relationships will change in future conditions is largely unknown. We investigated independent and interactive effects of warming and acidification on a large brown seaweed, the kelp Ecklonia radiata, and its associated microbiome in experimental mesocosms. Microbial communities were affected by warming and, during the first week, by acidification. During the second week, kelp developed disease-like symptoms previously observed in the field. The tissue of some kelp blistered, bleached and eventually degraded, particularly under the acidification treatments, affecting photosynthetic efficiency. Microbial communities differed between blistered and healthy kelp for all treatments, except for those under future conditions of warming and acidification, which after two weeks resembled assemblages associated with healthy hosts. This indicates that changes in the microbiome were not easily predictable as the severity of future climate scenarios increased. Future ocean conditions can change kelp microbiomes and may lead to host disease, with potentially cascading impacts on associated ecosystems.


Asunto(s)
Cambio Climático , Kelp/fisiología , Microbiota , Agua de Mar/química , Ecosistema , Calentamiento Global , Concentración de Iones de Hidrógeno , Kelp/microbiología
14.
Proc Natl Acad Sci U S A ; 113(48): 13791-13796, 2016 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-27849585

RESUMEN

Some of the most profound effects of climate change on ecological communities are due to alterations in species interactions rather than direct physiological effects of changing environmental conditions. Empirical evidence of historical changes in species interactions within climate-impacted communities is, however, rare and difficult to obtain. Here, we demonstrate the recent disappearance of key habitat-forming kelp forests from a warming tropical-temperate transition zone in eastern Australia. Using a 10-y video dataset encompassing a 0.6 °C warming period, we show how herbivory increased as kelp gradually declined and then disappeared. Concurrently, fish communities from sites where kelp was originally abundant but subsequently disappeared became increasingly dominated by tropical herbivores. Feeding assays identified two key tropical/subtropical herbivores that consumed transplanted kelp within hours at these sites. There was also a distinct increase in the abundance of fishes that consume epilithic algae, and much higher bite rates by this group at sites without kelp, suggesting a key role for these fishes in maintaining reefs in kelp-free states by removing kelp recruits. Changes in kelp abundance showed no direct relationship to seawater temperatures over the decade and were also unrelated to other measured abiotic factors (nutrients and storms). Our results show that warming-mediated increases in fish herbivory pose a significant threat to kelp-dominated ecosystems in Australia and, potentially, globally.


Asunto(s)
Ecosistema , Peces/fisiología , Kelp/crecimiento & desarrollo , Océanos y Mares , Animales , Australia , Cambio Climático , Cadena Alimentaria , Herbivoria/fisiología , Temperatura , Clima Tropical
15.
Mol Biol Evol ; 33(9): 2201-15, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27301593

RESUMEN

Corals rely on photosynthesis by their endosymbiotic dinoflagellates (Symbiodinium spp.) to form the basis of tropical coral reefs. High sea surface temperatures driven by climate change can trigger the loss of Symbiodinium from corals (coral bleaching), leading to declines in coral health. Different putative species (genetically distinct types) as well as conspecific populations of Symbiodinium can confer differing levels of thermal tolerance to their coral host, but the genes that govern dinoflagellate thermal tolerance are unknown. Here we show physiological and transcriptional responses to heat stress by a thermo-sensitive (physiologically susceptible at 32 °C) type C1 Symbiodinium population and a thermo-tolerant (physiologically healthy at 32 °C) type C1 Symbiodinium population. After nine days at 32 °C, neither population exhibited physiological stress, but both displayed up-regulation of meiosis genes by ≥ 4-fold and enrichment of meiosis functional gene groups, which promote adaptation. After 13 days at 32 °C, the thermo-sensitive population suffered a significant decrease in photosynthetic efficiency and increase in reactive oxygen species (ROS) leakage from its cells, whereas the thermo-tolerant population showed no signs of physiological stress. Correspondingly, only the thermo-tolerant population demonstrated up-regulation of a range of ROS scavenging and molecular chaperone genes by ≥ 4-fold and enrichment of ROS scavenging and protein-folding functional gene groups. The physiological and transcriptional responses of the Symbiodinium populations to heat stress directly correlate with the bleaching susceptibilities of corals that harbored these same Symbiodinium populations. Thus, our study provides novel, foundational insights into the molecular basis of dinoflagellate thermal tolerance and coral bleaching.


Asunto(s)
Antozoos/genética , Dinoflagelados/genética , Aclimatación/genética , Adaptación Fisiológica/genética , Animales , Antozoos/metabolismo , Cambio Climático , Arrecifes de Coral , Dinoflagelados/metabolismo , Calor , Chaperonas Moleculares/genética , Fotosíntesis/genética , Estrés Fisiológico/genética , Simbiosis , Transcriptoma
16.
J Eukaryot Microbiol ; 64(5): 588-597, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28120360

RESUMEN

Dinoflagellates within the genus Symbiodinium are photosymbionts of many tropical reef invertebrates, including corals, making them central to the health of coral reefs. Symbiodinium have therefore gained significant research attention, though studies have been constrained by technical limitations. In particular, the generation of viable cells with their cell walls removed (termed protoplasts) has enabled a wide range of experimental techniques for bacteria, fungi, plants, and algae such as ultrastructure studies, virus infection studies, patch clamping, genetic transformation, and protoplast fusion. However, previous studies have struggled to remove the cell walls from armored dinoflagellates, potentially due to the internal placement of their cell walls. Here, we produce the first Symbiodinium protoplasts from three genetically and physiologically distinct strains via incubation with cellulase and osmotic agents. Digestion of the cell walls was verified by a lack of Calcofluor White fluorescence signal and by cell swelling in hypotonic culture medium. Fused protoplasts were also observed, motivating future investigation into intra- and inter-specific somatic hybridization of Symbiodinium. Following digestion and transfer to regeneration medium, protoplasts remained photosynthetically active, regrew cell walls, regained motility, and entered exponential growth. Generation of Symbiodinium protoplasts opens exciting, new avenues for researching these crucial symbiotic dinoflagellates, including genetic modification.


Asunto(s)
Celulasa/metabolismo , Dinoflagelados/ultraestructura , Protoplastos/ultraestructura , Pared Celular/metabolismo , Arrecifes de Coral , Protoplastos/metabolismo , Simbiosis
17.
Environ Microbiol ; 18(5): 1635-45, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26914307

RESUMEN

Interspecific competition between bacteria shapes community dynamics, causing evolutionary changes that affect life history traits. Here, we studied the role of interspecific competition on the generation of trait diversity using a two-species model system of marine, surface-associated bacteria. Bacterial biofilms of Phaeobacter inhibens were established alone or in competition with Pseudoalteromonas tunicata and phenotypic traits of dispersal cells were assessed during biofilm development. P. inhibens dispersal isolates from competition biofilms displayed less phenotypic variation, were superior competitors, were less susceptible to predation, and reached higher planktonic biomass than isolates from noncompetition biofilms. Moreover, the maintenance of competitive ability exhibited by individual dispersal isolates from competition biofilms did not result in an obvious reduction (measured as a negative trait correlation) in other traits, but was rather positively correlated with planktonic growth. However, where negative correlations between traits were found, they were exhibited by individuals derived from noncompetitive biofilms, whose populations also had a higher degree of trait variation than those from biofilms experiencing competition. Our observations indicate that interspecific competition during biofilm formation is important for maintaining both competitive ability and affects variation in ecologically relevant traits. Given that most bacteria in biofilms exist in diverse, multispecies communities, an understanding of how bacteria respond to biotic factors such as interspecific competition is critical for understanding the dynamics of bacterial populations in both ecological and evolutionary time.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Rhodobacteraceae/fisiología , Técnicas de Cocultivo , Modelos Biológicos , Pseudoalteromonas , Rhodobacteraceae/genética , Especificidad de la Especie
18.
Environ Microbiol ; 18(12): 4391-4402, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27062175

RESUMEN

Surfaces, including those submerged in the marine environment, are subjected to constant interactions and colonisation by surrounding microorganisms. The principles that determine the assembly of those epibiotic communities are however poorly understood. In this study, we employed a hierarchical design to assess the functionality and diversity of microbial communities on different types of host surfaces (e.g. macroalgae, seagrasses). We found that taxonomic diversity was unique to each type of host, but that the majority of functions (> 95%) could be found in any given surface community, suggesting a high degree of functional redundancy. However, some community functions were enriched on certain surfaces and were related to host-specific properties (e.g. the degradation of specific polysaccharides). Together these observations support a model, whereby communities on surfaces are assembled from guilds of microorganisms with a functionality that is partitioned into general properties for a surface-associated life-style, but also specific features that mediate host-specificity.


Asunto(s)
Bacterias/clasificación , Biodiversidad , Poaceae/microbiología , Agua de Mar/microbiología , Algas Marinas/microbiología , Bacterias/genética , Bacterias/crecimiento & desarrollo , Bacterias/aislamiento & purificación
19.
J Urol ; 206(5): 1239, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34378974
20.
Environ Microbiol ; 17(10): 4078-88, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26148974

RESUMEN

Interactions between hosts and associated microbial communities can fundamentally shape the development and ecology of 'holobionts', from humans to marine habitat-forming organisms such as seaweeds. In marine systems, planktonic microbial community structure is mainly driven by geography and related environmental factors, but the large-scale drivers of host-associated microbial communities are largely unknown. Using 16S-rRNA gene sequencing, we characterized 260 seaweed-associated bacterial and archaeal communities on the kelp Ecklonia radiata from three biogeographical provinces spanning 10° of latitude and 35° of longitude across the Australian continent. These phylogenetically and taxonomically diverse communities were more strongly and consistently associated with host condition than geographical location or environmental variables, and a 'core' microbial community characteristic of healthy kelps appears to be lost when hosts become stressed. Microbial communities on stressed individuals were more similar to each other among locations than those on healthy hosts. In contrast to biogeographical patterns of planktonic marine microbial communities, host traits emerge as critical determinants of associated microbial community structure of these holobionts, even at a continental scale.


Asunto(s)
Archaea/clasificación , Bacterias/clasificación , Kelp/microbiología , Microbiota/genética , Plancton/microbiología , Archaea/genética , Australia , Bacterias/genética , Ecosistema , Ambiente , Geografía , Humanos , Microbiota/fisiología , Fenotipo , Filogenia , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA