Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
EMBO J ; 42(1): e110518, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36341575

RESUMEN

Unusually low temperatures caused by global climate change adversely affect rice production. Sensing cold to trigger signal network is a key base for improvement of chilling tolerance trait.  Here, we report that Oryza sativa Calreticulin 3 (OsCRT3) localized at the endoplasmic reticulum (ER) exhibits conformational changes under cold stress, thereby enhancing its interaction with CBL-interacting protein kinase 7 (OsCIPK7) to sense cold. Phenotypic analyses of OsCRT3 knock-out mutants and transgenic overexpression lines demonstrate that OsCRT3 is a positive regulator in chilling tolerance. OsCRT3 localizes at the ER and mediates increases in cytosolic calcium levels under cold stress. Notably, cold stress triggers secondary structural changes of OsCRT3 and enhances its binding affinity with OsCIPK7, which finally boosts its kinase activity. Moreover, Calcineurin B-like protein 7 (OsCBL7) and OsCBL8 interact with OsCIPK7 specifically on the plasma membrane. Taken together, our results thus identify a cold-sensing mechanism that simultaneously conveys cold-induced protein conformational change, enhances kinase activity, and Ca2+ signal generation to facilitate chilling tolerance in rice.


Asunto(s)
Calreticulina , Oryza , Calreticulina/metabolismo , Oryza/genética , Oryza/metabolismo , Temperatura , Frío , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
New Phytol ; 229(5): 2765-2779, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33187027

RESUMEN

Low concentrations of CO2 cause stomatal opening, whereas [CO2 ] elevation leads to stomatal closure. Classical studies have suggested a role for Ca2+ and protein phosphorylation in CO2 -induced stomatal closing. Calcium-dependent protein kinases (CPKs) and calcineurin-B-like proteins (CBLs) can sense and translate cytosolic elevation of the second messenger Ca2+ into specific phosphorylation events. However, Ca2+ -binding proteins that function in the stomatal CO2 response remain unknown. Time-resolved stomatal conductance measurements using intact plants, and guard cell patch-clamp experiments were performed. We isolated cpk quintuple mutants and analyzed stomatal movements in response to CO2 , light and abscisic acid (ABA). Interestingly, we found that cpk3/5/6/11/23 quintuple mutant plants, but not other analyzed cpk quadruple/quintuple mutants, were defective in high CO2 -induced stomatal closure and, unexpectedly, also in low CO2 -induced stomatal opening. Furthermore, K+ -uptake-channel activities were reduced in cpk3/5/6/11/23 quintuple mutants, in correlation with the stomatal opening phenotype. However, light-mediated stomatal opening remained unaffected, and ABA responses showed slowing in some experiments. By contrast, CO2 -regulated stomatal movement kinetics were not clearly affected in plasma membrane-targeted cbl1/4/5/8/9 quintuple mutant plants. Our findings describe combinatorial cpk mutants that function in CO2 control of stomatal movements and support the results of classical studies showing a role for Ca2+ in this response.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/farmacología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Dióxido de Carbono , Estomas de Plantas , Proteínas Quinasas/genética
3.
New Phytol ; 229(4): 2223-2237, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33098106

RESUMEN

The collective function of calcineurin B-like (CBL) calcium ion (Ca2+ ) sensors and CBL-interacting protein kinases (CIPKs) in decoding plasma-membrane-initiated Ca2+ signals to convey developmental and adaptive responses to fluctuating nitrate availability remained to be determined. Here, we generated a cbl-quintuple mutant in Arabidopsis thaliana devoid of these Ca2+ sensors at the plasma membrane and performed comparative phenotyping, nitrate flux determination, phosphoproteome analyses, and studies of membrane domain protein distribution in response to low and high nitrate availability. We observed that CBL proteins exert multifaceted regulation of primary and lateral root growth and nitrate fluxes. Accordingly, we found that loss of plasma membrane Ca2+ sensor function simultaneously affected protein phosphorylation of numerous membrane proteins, including several nitrate transporters, proton pumps, and aquaporins, as well as their distribution within plasma membrane microdomains, and identified a specific phosphorylation and domain distribution pattern during distinct phases of low and high nitrate responses. Collectively, these analyses reveal a central and coordinative function of CBL-CIPK-mediated signaling in conveying plant adaptation to fluctuating nitrate availability and identify a crucial role of Ca2+ signaling in regulating the composition and dynamics of plasma membrane microdomains.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis/fisiología , Proteínas de Unión al Calcio , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiología , Calcineurina/metabolismo , Calcio/metabolismo , Proteínas de Unión al Calcio/fisiología , Membrana Celular/fisiología , Nitratos/metabolismo , Fosforilación , Raíces de Plantas/crecimiento & desarrollo
4.
Nature ; 572(7769): 318-320, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31406308
5.
Nature ; 549(7670): 35-36, 2017 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-28846998
6.
New Phytol ; 213(2): 739-750, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27579668

RESUMEN

In plants, potassium (K+ ) homeostasis is tightly regulated and established against a concentration gradient to the environment. Despite the identification of Ca2+ -regulated kinases as modulators of K+ channels, the immediate signaling and adaptation mechanisms of plants to low-K+ conditions are only partially understood. To assess the occurrence and role of Ca2+ signals in Arabidopsis thaliana roots, we employed ratiometric analyses of Ca2+ dynamics in plants expressing the Ca2+ reporter YC3.6 in combination with patch-clamp analyses of root cells and two-electrode voltage clamp (TEVC) analyses in Xenopus laevis oocytes. K+ deficiency triggers two successive and distinct Ca2+ signals in roots exhibiting spatial and temporal specificity. A transient primary Ca2+ signature arose within 1 min in the postmeristematic stelar tissue of the elongation zone, while a secondary Ca2+ response occurred after several hours as sustained Ca2+ elevation in defined tissues of the elongation and root hair differentiation zones. Patch-clamp and TEVC analyses revealed Ca2+ dependence of the activation of the K+ channel AKT1 by the CBL1-CIPK23 Ca2+ sensor-kinase complex. Together, these findings identify a critical role of cell group-specific Ca2+ signaling in low K+ responses and indicate an essential and direct role of Ca2+ signals for AKT1 K+ channel activation in roots.


Asunto(s)
Arabidopsis/metabolismo , Señalización del Calcio , Potasio/metabolismo , Adaptación Fisiológica/efectos de los fármacos , Animales , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Citoplasma/efectos de los fármacos , Citoplasma/metabolismo , Citosol/efectos de los fármacos , Citosol/metabolismo , Electrodos , Activación del Canal Iónico/efectos de los fármacos , Lantano/farmacología , Mutación/genética , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Técnicas de Placa-Clamp , Raíces de Plantas/citología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Dominios Proteicos , Protoplastos/efectos de los fármacos , Protoplastos/metabolismo , Factores de Tiempo , Xenopus
7.
Proc Natl Acad Sci U S A ; 111(17): E1806-14, 2014 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-24733919

RESUMEN

Stomatal movements rely on alterations in guard cell turgor. This requires massive K(+) bidirectional fluxes across the plasma and tonoplast membranes. Surprisingly, given their physiological importance, the transporters mediating the energetically uphill transport of K(+) into the vacuole remain to be identified. Here, we report that, in Arabidopsis guard cells, the tonoplast-localized K(+)/H(+) exchangers NHX1 and NHX2 are pivotal in the vacuolar accumulation of K(+) and that nhx1 nhx2 mutant lines are dysfunctional in stomatal regulation. Hypomorphic and complete-loss-of-function double mutants exhibited significantly impaired stomatal opening and closure responses. Disruption of K(+) accumulation in guard cells correlated with more acidic vacuoles and the disappearance of the highly dynamic remodelling of vacuolar structure associated with stomatal movements. Our results show that guard cell vacuolar accumulation of K(+) is a requirement for stomatal opening and a critical component in the overall K(+) homeostasis essential for stomatal closure, and suggest that vacuolar K(+) fluxes are also of decisive importance in the regulation of vacuolar dynamics and luminal pH that underlie stomatal movements.


Asunto(s)
Arabidopsis/fisiología , Membranas Intracelulares/metabolismo , Estomas de Plantas/fisiología , Potasio/metabolismo , Vacuolas/metabolismo , Ácidos/metabolismo , Arabidopsis/citología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Transporte de Catión/genética , Cationes/metabolismo , Forma de la Célula/efectos de los fármacos , Ritmo Circadiano/efectos de los fármacos , Ritmo Circadiano/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Imagenología Tridimensional , Rayos Infrarrojos , Movimiento , Mutación/genética , Estomas de Plantas/citología , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/genética , Transpiración de Plantas/efectos de los fármacos , Transpiración de Plantas/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Sodio/farmacología , Intercambiadores de Sodio-Hidrógeno/genética , Suelo , Termografía , Vacuolas/efectos de los fármacos , Vacuolas/genética , Agua
8.
Plant Physiol ; 169(1): 780-92, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26198257

RESUMEN

The role of calcium-mediated signaling has been extensively studied in plant responses to abiotic stress signals. Calcineurin B-like proteins (CBLs) and CBL-interacting protein kinases (CIPKs) constitute a complex signaling network acting in diverse plant stress responses. Osmotic stress imposed by soil salinity and drought is a major abiotic stress that impedes plant growth and development and involves calcium-signaling processes. In this study, we report the functional analysis of CIPK21, an Arabidopsis (Arabidopsis thaliana) CBL-interacting protein kinase, ubiquitously expressed in plant tissues and up-regulated under multiple abiotic stress conditions. The growth of a loss-of-function mutant of CIPK21, cipk21, was hypersensitive to high salt and osmotic stress conditions. The calcium sensors CBL2 and CBL3 were found to physically interact with CIPK21 and target this kinase to the tonoplast. Moreover, preferential localization of CIPK21 to the tonoplast was detected under salt stress condition when coexpressed with CBL2 or CBL3. These findings suggest that CIPK21 mediates responses to salt stress condition in Arabidopsis, at least in part, by regulating ion and water homeostasis across the vacuolar membranes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Ósmosis/efectos de los fármacos , Cloruro de Sodio/farmacología , Estrés Fisiológico/efectos de los fármacos , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Unión al Calcio/metabolismo , ADN Bacteriano/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Prueba de Complementación Genética , Manitol/farmacología , Modelos Biológicos , Mutagénesis Insercional/efectos de los fármacos , Mutación/genética , Fenotipo , Proteínas Serina-Treonina Quinasas/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Vacuolas/efectos de los fármacos , Vacuolas/metabolismo
9.
Biochim Biophys Acta ; 1833(7): 1573-81, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23072967

RESUMEN

Pollen tubes grow rapidly by very fast rates and reach extended lengths to bring about fertilization during plant reproduction. The pollen tube grows exclusively at its tip. Fundamental for such local, tip-focused growth are the presence of internal gradients and transmembrane fluxes of ions. Consequently, vegetative pollen tube cells are an excellent single cell model system to investigate cell biological processes of vesicle transport, cytoskeleton reorganization and regulation of ion transport. The second messenger Ca(2+) has emerged as a central and crucial modulator that not only regulates but also integrates the coordination each of these processes. In this review we reflect on recent advances in our understanding of the mechanisms of Ca(2+) function in pollen tube growth, focusing on its role in basic cellular processes such as control of cell growth, vesicular transport and intracellular signaling by localized gradients of second messengers. In particular we discuss new insights into the identity and role of Ca(2+) conductive ion channels and present experimental addressable hypotheses about their regulation. This article is part of a Special Issue entitled:12th European Symposium on Calcium.


Asunto(s)
Calcio/farmacología , Plantas/metabolismo , Tubo Polínico/crecimiento & desarrollo , Polen/crecimiento & desarrollo , Polinización/fisiología , Plantas/efectos de los fármacos , Polen/efectos de los fármacos , Polen/metabolismo , Tubo Polínico/efectos de los fármacos , Tubo Polínico/metabolismo , Polinización/efectos de los fármacos
10.
Dev Cell ; 57(17): 2081-2094.e7, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-36007523

RESUMEN

Excessive Na+ in soils inhibits plant growth. Here, we report that Na+ stress triggers primary calcium signals specifically in a cell group within the root differentiation zone, thus forming a "sodium-sensing niche" in Arabidopsis. The amplitude of this primary calcium signal and the speed of the resulting Ca2+ wave dose-dependently increase with rising Na+ concentrations, thus providing quantitative information about the stress intensity encountered. We also delineate a Ca2+-sensing mechanism that measures the stress intensity in order to mount appropriate salt detoxification responses. This is mediated by a Ca2+-sensor-switch mechanism, in which the sensors SOS3/CBL4 and CBL8 are activated by distinct Ca2+-signal amplitudes. Although the SOS3/CBL4-SOS2/CIPK24-SOS1 axis confers basal salt tolerance, the CBL8-SOS2/CIPK24-SOS1 module becomes additionally activated only in response to severe salt stress. Thus, Ca2+-mediated translation of Na+ stress intensity into SOS1 Na+/H+ antiporter activity facilitates fine tuning of the sodium extrusion capacity for optimized salt-stress tolerance.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Calcio/metabolismo , Estrés Salino , Sodio/metabolismo , Intercambiadores de Sodio-Hidrógeno/genética
11.
Plant J ; 61(2): 211-22, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19832944

RESUMEN

During adaptation and developmental processes cells respond through nonlinear calcium-decoding signaling cascades, the principal components of which have been identified. However, the molecular mechanisms generating specificity of cellular responses remain poorly understood. Calcineurin B-like (CBL) proteins contribute to decoding calcium signals by specifically interacting with a group of CBL-interacting protein kinases (CIPKs). Here, we report the subcellular localization of all 10 CBL proteins from Arabidopsis and provide a cellular localization matrix of a plant calcium signaling network. Our findings suggest that individual CBL proteins decode calcium signals not only at the plasma membrane and the tonoplast, but also in the cytoplasm and nucleus. We found that distinct targeting signals located in the N-terminal domain of CBL proteins determine the spatially discrete localization of CBL/CIPK complexes by COPII-independent targeting pathways. Our findings establish the CBL/CIPK signaling network as a calcium decoding system that enables the simultaneous specific information processing of calcium signals emanating from different intra- and extracellular stores, and thereby provides a mechanism underlying the specificity of cellular responses.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/clasificación , Proteínas de Arabidopsis/genética , Western Blotting , Proteínas de Unión al Calcio/clasificación , Proteínas de Unión al Calcio/genética , Regulación de la Expresión Génica de las Plantas , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Confocal , Filogenia , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Protoplastos/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Vacuolas/metabolismo
12.
Methods Mol Biol ; 2160: 223-231, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32529440

RESUMEN

Overexpression of RFP-tagged proteins in growing tobacco pollen tubes together with the genetically encoded Ca2+ sensor YC3.6 allows to analyze localization and dynamics of the protein of interest, as well as the impact of its overexpression on Ca2+ dynamics and pollen tube growth. Here, we describe a step-by-step instruction for transient transformation of N. tabacum pollen and subsequent in vitro germination and Ca2+ imaging.


Asunto(s)
Señalización del Calcio , Transferencia Resonante de Energía de Fluorescencia/métodos , Proteínas de Plantas/metabolismo , Tubo Polínico/metabolismo , Regulación hacia Arriba , Transferencia Resonante de Energía de Fluorescencia/normas , Proteínas de Plantas/genética , Tubo Polínico/genética , Tubo Polínico/fisiología , Nicotiana
14.
Dev Cell ; 48(5): 726-740.e10, 2019 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-30713077

RESUMEN

Nutrient acquisition is entangled with growth and stress in sessile organisms. The bHLH transcription factor FIT is a key regulator of Arabidopsis iron (Fe) acquisition and post-translationally activated upon low Fe. We identified CBL-INTERACTING PROTEIN KINASE CIPK11 as a FIT interactor. Cytosolic Ca2+ concentration and CIPK11 expression are induced by Fe deficiency. cipk11 mutant plants display compromised root Fe mobilization and seed Fe content. Fe uptake is dependent on CBL1/CBL9. CIPK11 phosphorylates FIT at Ser272, and mutation of this target site modulates FIT nuclear accumulation, homo-dimerization, interaction with bHLH039, and transcriptional activity and affects the plant's Fe-uptake ability. We propose that Ca2+-triggered CBL1/9-mediated activation of CIPK11 and subsequent phosphorylation of FIT shifts inactive into active FIT, allowing regulatory protein interactions in the nucleus. This biochemical link between Fe deficiency and the cellular Ca2+ decoding machinery represents an environment-sensing mechanism to adjust nutrient uptake.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Señalización del Calcio/fisiología , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Núcleo Celular/metabolismo , Fosforilación , Raíces de Plantas/genética , Plantas Modificadas Genéticamente/metabolismo
15.
New Phytol ; 179(3): 675-686, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18507772

RESUMEN

* Guard cell movements are regulated by environmental cues including, for example, elevations in extracellular Ca(2+) concentration. Here, the subcellular localization and physiological function of the Ca(2+)-sensing receptor (CAS) protein was investigated. * CAS protein localization was ascertained by microscopic analyses of green fluorescent protein (GFP) fusion proteins and biochemical fractionation assays. Comparative guard cell movement investigations were performed in wild-type and cas loss-of-function mutant lines of Arabidopsis thaliana. Cytoplasmic Ca(2+) dynamics were addressed in plants expressing the yellow cameleon reporter protein YC3.6. * This study identified CAS as a chloroplast-localized protein that is crucial for proper stomatal regulation in response to elevations of external Ca(2+). CAS fulfils this role through modulation of the cytoplasmic Ca(2+) concentration. * This work reveals a novel role of the chloroplast in cellular Ca(2+) signal transduction.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Proteínas de Unión al Calcio/fisiología , Calcio/metabolismo , Estomas de Plantas/metabolismo , Receptores Sensibles al Calcio/fisiología , Tilacoides/fisiología , Secuencia de Aminoácidos , Arabidopsis/fisiología , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/análisis , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Unión al Calcio/análisis , Proteínas de Unión al Calcio/genética , Fraccionamiento Celular , Secuencia Conservada , Citoplasma/metabolismo , Proteínas Fluorescentes Verdes/análisis , Estomas de Plantas/fisiología , Receptores Sensibles al Calcio/análisis , Receptores Sensibles al Calcio/genética , Proteínas Recombinantes de Fusión/análisis , Análisis de Secuencia de Proteína , Transducción de Señal/genética , Tilacoides/química , Tilacoides/ultraestructura , Nicotiana/genética , Nicotiana/ultraestructura
16.
Curr Biol ; 28(5): 666-675.e5, 2018 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-29456142

RESUMEN

Cells maintain integrity despite changes in their mechanical properties elicited during growth and environmental stress. How cells sense their physical state and compensate for cell-wall damage is poorly understood, particularly in plants. Here we report that FERONIA (FER), a plasma-membrane-localized receptor kinase from Arabidopsis, is necessary for the recovery of root growth after exposure to high salinity, a widespread soil stress. The extracellular domain of FER displays tandem regions of homology with malectin, an animal protein known to bind di-glucose in vitro and important for protein quality control in the endoplasmic reticulum. The presence of malectin-like domains in FER and related receptor kinases has led to widespread speculation that they interact with cell-wall polysaccharides and can potentially serve a wall-sensing function. Results reported here show that salinity causes softening of the cell wall and that FER is necessary to sense these defects. When this function is disrupted in the fer mutant, root cells explode dramatically during growth recovery. Similar defects are observed in the mur1 mutant, which disrupts pectin cross-linking. Furthermore, fer cell-wall integrity defects can be rescued by treatment with calcium and borate, which also facilitate pectin cross-linking. Sensing of these salinity-induced wall defects might therefore be a direct consequence of physical interaction between the extracellular domain of FER and pectin. FER-dependent signaling elicits cell-specific calcium transients that maintain cell-wall integrity during salt stress. These results reveal a novel extracellular toxicity of salinity, and identify FER as a sensor of damage to the pectin-associated wall.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Señalización del Calcio/genética , Fosfotransferasas/genética , Estrés Salino/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Fosfotransferasas/metabolismo
17.
Curr Biol ; 25(11): 1475-82, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25936548

RESUMEN

Polarized tip growth is a fundamental process of specialized eukaryotic cells like neuronal axons, fungal hyphae, and plant root hairs and pollen tubes. In pollen tubes, a tip-focused oscillating Ca(2+) gradient governs ions fluxes, vesicle transport, and cytoskeleton dynamics to ensure proper polarized cell growth [1, 2]. While a crucial role of vacuolar Ca(2+) signaling is established for cellular movements like guard cell dynamics [3-5], its contribution to polarized growth remains to be defined. Here we identified the two closely related tonoplast-localized Ca(2+)-sensor proteins CBL2 and CBL3 as crucial regulators of vacuolar dynamics and polarized pollen tube growth. Overexpression of CBL2 or CBL3 in Arabidopsis and tobacco pollen tubes affected vacuolar morphology, pollen germination, and tube growth, but did not alter actin organization, PI(4,5)P2 distribution, or tip-focused Ca(2+) oscillations. Similarly, loss of function of each single Ca(2+) sensor and cbl2/cbl3 double mutants exhibited impaired pollen tube growth in vitro and in vivo. Both Ca(2+) sensors interacted with the kinase CIPK12, which translocated from the cytoplasm to the vacuolar membrane upon this interaction. Also, overexpression of CIPK12 induced severe vacuolar phenotypes, and loss of function of CIPK12 lead to impairment of polar growth. Remarkably, co-expression of CBL2 or CBL3 with CIPK12 resulted in a phosphorylation-dependent, massively enhanced vacuolar inflation and further disruption of polar growth. Together, these findings identify an essential role of the vacuole and vacuolar Ca(2+) signaling for polarized tip growth. We propose that a faithfully balanced activity of Ca(2+)-activated CBL2/3-CIPK12 complexes fulfills fundamental functions to enable the fast growth of pollen tubes in higher plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Señalización del Calcio , Proteínas de Unión al Calcio/metabolismo , Tubo Polínico/crecimiento & desarrollo , Proteínas Serina-Treonina Quinasas/metabolismo , Citoesqueleto de Actina/metabolismo , Fenotipo , Vacuolas/enzimología
18.
Curr Opin Plant Biol ; 22: 14-21, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25195171

RESUMEN

Previous research has established calcium (Ca(2+)) and reactive oxygen species (ROS) as important cellular second messengers in eukaryotes. Recently, the occurrence of cell-to-cell moving Ca(2+) and ROS waves was reported in plants. This was paralleled by the discovery of long-distance wound-activated surface potential changes (WASPs) that require the function of putatively Ca(2+)-releasing glutamate receptor-like channels (GLRs) in Arabidopsis. Although the functional interconnection of Ca(2+)-dependent phosphorylation and ROS waves via NADPH oxidase activation has been clearly established, potential further interconnections between these long-distance signaling processes are less clear. In this review we cover emerging concepts and existing open questions that interconnect cellular and global signaling via Ca(2+), ROS and WASPs.


Asunto(s)
Calcio/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sistemas de Mensajero Secundario/fisiología , Transducción de Señal/fisiología
19.
Mol Plant ; 6(2): 559-69, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23335733

RESUMEN

Stimulus-specific accumulation of second messengers like reactive oxygen species (ROS) and Ca(2+) are central to many signaling and regulation processes in plants. However, mechanisms that govern the reciprocal interrelation of Ca(2+) and ROS signaling are only beginning to emerge. NADPH oxidases of the respiratory burst oxidase homolog (RBOH) family are critical components contributing to the generation of ROS while Calcineurin B-like (CBL) Ca(2+) sensor proteins together with their interacting kinases (CIPKs) have been shown to function in many Ca(2+)- signaling processes. In this study, we identify direct functional interactions between both signaling systems. We report that the CBL-interacting protein kinase CIPK26 specifically interacts with the N-terminal domain of RBOHF in yeast two-hybrid analyses and with the full-length RBOHF protein in plant cells. In addition, CIPK26 phosphorylates RBOHF in vitro and co-expression of either CBL1 or CBL9 with CIPK26 strongly enhances ROS production by RBOHF in HEK293T cells. Together, these findings identify a direct interconnection between CBL-CIPK-mediated Ca(2+) signaling and ROS signaling in plants and provide evidence for a synergistic activation of the NADPH oxidase RBOHF by direct Ca(2+)-binding to its EF-hands and Ca(2+)-induced phosphorylation by CBL1/9-CIPK26 complexes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/metabolismo , Proteínas de Unión al Calcio/metabolismo , NADPH Oxidasas/metabolismo , Proteínas Quinasas/metabolismo , Arabidopsis/citología , Calcio/metabolismo , Membrana Celular/metabolismo , Citoplasma/enzimología , Activación Enzimática , Células HEK293 , Humanos , NADPH Oxidasas/química , Fosforilación , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas
20.
Mol Plant ; 6(4): 1149-62, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23741064

RESUMEN

Ca(2+) has been established as an important second messenger regulating pollen germination and tube growth. However, to date, only a few signaling components have been identified to decode and relay Ca(2+) signals in growing pollen tubes. Here, we report a function for the calcineurin B-like (CBL) Ca(2+) sensor proteins CBL1 and CBL9 from Arabidopsis in pollen germination and tube growth. Both proteins are expressed in mature pollen and pollen tubes and impair pollen tube growth and morphology if transiently overexpressed in tobacco pollen. The induction of these phenotypes requires efficient plasma membrane targeting of CBL1 and is independent of Ca(2+) binding to the fourth EF-hand of CBL1. Overexpression of CBL1 or its closest homolog CBL9 in Arabidopsis renders pollen germination and tube growth hypersensitive towards high external K(+) concentrations while disruption of CBL1 and CBL9 reduces pollen tube growth under low K(+) conditions. Together, our data identify a crucial function for CBL1 and CBL9 in pollen germination and tube growth and suggest a model in which both proteins act at the plasma membrane through regulation of K(+) homeostasis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Germinación , Tubo Polínico/crecimiento & desarrollo , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Unión al Calcio/genética , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Relación Dosis-Respuesta a Droga , Germinación/efectos de los fármacos , Homeostasis/efectos de los fármacos , Mutación , Tubo Polínico/anatomía & histología , Tubo Polínico/efectos de los fármacos , Tubo Polínico/metabolismo , Potasio/farmacología , Transporte de Proteínas , Nicotiana/genética , Nicotiana/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA