Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biochim Biophys Acta ; 1840(8): 2599-608, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24747732

RESUMEN

BACKGROUND: Heparanase is the only known mammalian glycosidase capable of cleaving heparan sulfate chains. The expression of this enzyme has been associated with tumor development because of its ability to degrade extracellular matrix and promote cell invasion. METHODS: We analyzed heparanase expression in lung cancer samples to understand lung tumor progression and malignancy. Of the samples from 37 patients, there were 14 adenocarcinomas, 13 squamous cell carcinomas, 5 large cell carcinomas, and 5 small cell carcinomas. Immunohistochemistry was performed to ascertain the expression and localization of heparanase. RESULTS: All of the tumor types expressed heparanase, which was predominantly localized within the cytoplasm and nucleus. Significant enzyme expression was also observed in cells within the tumor microenvironment, such as fibroblasts, epithelial cells, and inflammatory cells. Adenocarcinomas exhibited the strongest heparanase staining intensity and the most widespread heparanase distribution. Squamous cell carcinomas, large cell carcinomas, and small cell carcinomas had a similar subcellular distribution of heparanase to adenocarcinomas but the distribution was less widespread. Heparanase expression tended to correlate with tumor node metastasis (TNM) staging in non-small cell lung carcinoma. CONCLUSION: In this study, we showed that heparanase was localized to the cytoplasm and nucleus of tumor cells and to cells within the microenvironment in different types of lung cancer. This enzyme exhibited a differential distribution based on the type of lung tumor. General significance Elucidating the heparanase expression patterns in different types of lung cancer increased our understanding of the crucial role of heparanase in lung cancer biology. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.


Asunto(s)
Glucuronidasa/metabolismo , Neoplasias Pulmonares/clasificación , Neoplasias Pulmonares/enzimología , Adenocarcinoma/enzimología , Adenocarcinoma/patología , Diferenciación Celular , Membrana Celular/enzimología , Núcleo Celular/enzimología , Núcleo Celular/patología , Femenino , Humanos , Neoplasias Pulmonares/patología , Linfocitos/enzimología , Macrófagos/enzimología , Masculino , Persona de Mediana Edad , Metástasis de la Neoplasia , Estadificación de Neoplasias , Transporte de Proteínas , Coloración y Etiquetado , Microambiente Tumoral
2.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37895872

RESUMEN

Ascidians are marine invertebrates that synthesize sulfated glycosaminoglycans (GAGs) within their viscera. Ascidian GAGs are considered analogues of mammalian GAGs and possess great potential as bioactive compounds, presenting antitumoral and anticoagulant activity. Due to its worldwide occurrence and, therefore, being a suitable organism for large-scale mariculture in many marine environments, our main objectives are to study Microcosmus exasperatus GAGs regarding composition, structure, and biological activity. We also aim to develop efficient protocols for sulfated polysaccharides extraction and purification for large-scale production and clinical applications. GAGs derived from M. exasperatus viscera were extracted by proteolytic digestion, purified by ion-exchange liquid chromatography, and characterized by agarose gel electrophoresis and enzymatic treatments. Anticoagulant activity was evaluated by APTT assays. Antitumoral activity was assessed in an in vitro model of tumor cell culture using MTT, clonogenic, and wound healing assays, respectively. Our results show that M. exasperatus presents three distinct polysaccharides; among them, two were identified: a dermatan sulfate and a fucosylated dermatan sulfate. Antitumoral activity was confirmed for the total polysaccharides (TP). While short-term incubation does not affect tumor cell viability at low concentrations, long-term TP incubation decreases LLC tumor cell growth/proliferation at different concentrations. In addition, TP decreased tumor cell migration at different concentrations. In conclusion, we state that M. exasperatus presents great potential as an alternative GAG source, producing compounds with antitumoral properties at low concentrations that do not possess anticoagulant activity and do not enhance other aspects of malignancy, such as tumor cell migration. Our perspectives are to apply these molecules in future preclinical studies for cancer treatment as antitumoral agents to be combined with current treatments to potentiate therapeutic efficacy.

3.
Membranes (Basel) ; 12(2)2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35207121

RESUMEN

Chemoresistance persists as a significant, unresolved clinical challenge in many cancer types. The tumor microenvironment, in which cancer cells reside and interact with non-cancer cells and tissue structures, has a known role in promoting every aspect of tumor progression, including chemoresistance. However, the molecular determinants of microenvironment-driven chemoresistance are mainly unknown. In this review, we propose that the TP53 tumor suppressor, found mutant in over half of human cancers, is a crucial regulator of cancer cell-microenvironment crosstalk and a prime candidate for the investigation of microenvironment-specific modulators of chemoresistance. Wild-type p53 controls the secretion of factors that inhibit the tumor microenvironment, whereas altered secretion or mutant p53 interfere with p53 function to promote chemoresistance. We highlight resistance mechanisms promoted by mutant p53 and enforced by the microenvironment, such as extracellular matrix remodeling and adaptation to hypoxia. Alterations of wild-type p53 extracellular function may create a cascade of spatial amplification loops in the tumor tissue that can influence cellular behavior far from the initial oncogenic mutation. We discuss the concept of chemoresistance as a multicellular/tissue-level process rather than intrinsically cellular. Targeting p53-dependent crosstalk mechanisms between cancer cells and components of the tumor environment might disrupt the waves of chemoresistance that spread across the tumor tissue, increasing the efficacy of chemotherapeutic agents.

4.
Sci Rep ; 11(1): 15833, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34349175

RESUMEN

Metastatic disease remains the leading cause of death in cancer and understanding the mechanisms involved in tumor progression continues to be challenging. This work investigates the role of manganese in tumor progression in an in vivo model of tumor growth. Our data revealed that manganese accumulates within primary tumors and secondary organs as manganese-rich niches. Consequences of such phenomenon were investigated, and we verified that short-term changes in manganese alter cell surface molecules syndecan-1 and ß1-integrin, enhance collective cell migration and invasive behavior. Long-term increased levels of manganese do not affect cell growth and viability but enhance cell migration. We also observed that manganese is secreted from tumor cells in extracellular vesicles, rather than in soluble form. Finally, we describe exogenous glycosaminoglycans that counteract manganese effects on tumor cell behavior. In conclusion, our analyses describe manganese as a central element in tumor progression by accumulating in Mn-rich niches in vivo, as well as in vitro, affecting migration and extracellular vesicle secretion in vitro. Manganese accumulation in specific regions of the organism may not be a common ground for all cancers, nevertheless, it represents a new aspect of tumor progression that deserves special attention.


Asunto(s)
Neoplasias de la Mama/patología , Carcinoma Pulmonar de Lewis/patología , Movimiento Celular , Manganeso/metabolismo , Animales , Apoptosis , Neoplasias de la Mama/metabolismo , Carcinoma Pulmonar de Lewis/metabolismo , Proliferación Celular , Progresión de la Enfermedad , Femenino , Humanos , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Invasividad Neoplásica , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Schizophr Res ; 154(1-3): 30-5, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24593932

RESUMEN

Schizophrenia has been considered a devastating clinical syndrome rather than a single disease. Nevertheless, the mechanisms behind the onset of schizophrenia have been only partially elucidated. Several studies propose that levels of trace elements are abnormal in schizophrenia; however, conflicting data generated from different biological sources prevent conclusions being drawn. In this work, we used synchrotron radiation X-ray microfluorescence spectroscopy to compare trace element levels in neural progenitor cells (NPCs) derived from two clones of induced pluripotent stem cell lines of a clozapine-resistant schizophrenic patient and two controls. Our data reveal the presence of elevated levels of potassium and zinc in schizophrenic NPCs. Neural cells treated with valproate, an adjunctive medication for schizophrenia, brought potassium and zinc content back to control levels. These results expand the understanding of atomic element imbalance related to schizophrenia and may provide novel insights for the screening of drugs to treat mental disorders.


Asunto(s)
Antipsicóticos/farmacología , Células-Madre Neurales/efectos de los fármacos , Potasio/metabolismo , Esquizofrenia/tratamiento farmacológico , Ácido Valproico/farmacología , Zinc/metabolismo , Antipsicóticos/uso terapéutico , Línea Celular , Clozapina/uso terapéutico , Resistencia a Medicamentos , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Células-Madre Neurales/metabolismo , Esquizofrenia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA