Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Proteomics ; 16(7): 1166-76, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26867521

RESUMEN

Deficiency of mitochondrial sulfur dioxygenase (ETHE1) causes the severe metabolic disorder ethylmalonic encephalopathy, which is characterized by early-onset encephalopathy and defective cytochrome C oxidase because of hydrogen sulfide accumulation. Although the severe systemic consequences of the disorder are becoming clear, the molecular effects are not well defined. Therefore, for further elucidating the effects of ETHE1-deficiency, we performed a large scale quantitative proteomics study on liver tissue from ETHE1-deficient mice. Our results demonstrated a clear link between ETHE1-deficiency and redox active proteins, as reflected by downregulation of several proteins related to oxidation-reduction, such as different dehydrogenases and cytochrome P450 (CYP450) members. Furthermore, the protein data indicated impact of the ETHE1-deficiency on metabolic reprogramming through upregulation of glycolytic enzymes and by altering several heterogeneous ribonucleoproteins, indicating novel link between ETHE1 and gene expression regulation. We also found increase in total protein acetylation level, pointing out the link between ETHE1 and acetylation, which is likely controlled by both redox state and cellular metabolites. These findings are relevant for understanding the complexity of the disease and may shed light on important functions influenced by ETHE1 deficiency and by the concomitant increase in the gaseous mediator hydrogen sulfide. All MS data have been deposited in the ProteomeXchange with the dataset identifiers PXD002741 (http://proteomecentral.proteomexchange.org/dataset/PXD002741) and PXD002742 (http://proteomecentral.proteomexchange.org/dataset/PXD002741).


Asunto(s)
Encefalopatías Metabólicas Innatas/metabolismo , Dioxigenasas/deficiencia , Dioxigenasas/genética , Proteínas Mitocondriales/deficiencia , Proteínas Mitocondriales/genética , Proteoma/análisis , Proteoma/metabolismo , Proteómica/métodos , Púrpura/metabolismo , Acetilación , Animales , Femenino , Masculino , Ratones , Ratones Noqueados , Proteoma/genética
2.
Hum Mutat ; 35(1): 86-95, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24123825

RESUMEN

Multiple acyl-CoA dehydrogenation deficiency is a disorder of fatty acid and amino acid oxidation caused by defects of electron transfer flavoprotein (ETF) or its dehydrogenase (ETFDH). A clear relationship between genotype and phenotype makes genotyping of patients important not only diagnostically but also for prognosis and for assessment of treatment. In the present study, we show that a predicted benign ETFDH missense variation (c.158A>G/p.Lys53Arg) in exon 2 causes exon skipping and degradation of ETFDH protein in patient samples. Using splicing reporter minigenes and RNA pull-down of nuclear proteins, we show that the c.158A>G variation increases the strength of a preexisting exonic splicing silencer (ESS) motif UAGGGA. This ESS motif binds splice inhibitory hnRNP A1, hnRNP A2/B1, and hnRNP H proteins. Binding of these inhibitory proteins prevents binding of the positive splicing regulatory SRSF1 and SRSF5 proteins to nearby and overlapping exonic splicing enhancer elements and this causes exon skipping. We further suggest that binding of hnRNP proteins to UAGGGA is increased by triggering synergistic hnRNP H binding to GGG triplets located upstream and downsteam of the UAGGGA motif. A number of disease-causing exonic elements that induce exon skipping in other genes have a similar architecture as the one in ETFDH exon 2.


Asunto(s)
Adenosina/metabolismo , Flavoproteínas Transportadoras de Electrones/genética , Flavoproteínas Transportadoras de Electrones/metabolismo , Guanina/metabolismo , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Empalme del ARN , Secuencias de Aminoácidos , Cadáver , Elementos de Facilitación Genéticos , Exones , Regulación de la Expresión Génica , Variación Genética , Células HEK293 , Células HeLa , Ribonucleoproteína Nuclear Heterogénea A1 , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo F-H/metabolismo , Humanos , Recién Nacido , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/diagnóstico , Mutación Missense , Proteínas Nucleares/metabolismo , Unión Proteica , Proteínas de Unión al ARN/metabolismo , Análisis de Secuencia de ADN , Factores de Empalme Serina-Arginina , Elementos Silenciadores Transcripcionales , Repeticiones de Trinucleótidos
3.
Mol Genet Metab ; 111(3): 360-368, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24485985

RESUMEN

Short-chain acyl-CoA dehydrogenase (SCAD) deficiency is a rare inherited autosomal recessive disorder with not yet well established mechanisms of disease. In the present study, the mitochondrial proteome of five symptomatic patients homozygous for missense variations in the SCAD gene ACADS was investigated in an extensive large-scale proteomic study to map protein perturbations linked to the disease. Fibroblast cultures of patient cells homozygous for either c.319C>T/p.Arg107Cys (n=2) or c.1138C>T/p.Arg380Trp (n=3) in ACADS, and healthy controls (normal human dermal fibroblasts), were studied. The mitochondrial proteome derived from these cultures was analyzed by label free proteomics using high mass accuracy nanoliquid chromatography tandem mass spectrometry (nanoLC-MS/MS). More than 300 mitochondrial proteins were identified and quantified. Thirteen proteins had significant alteration in protein levels in patients carrying variation c.319C>T in ACADS compared to controls and they belonged to various pathways, such as the antioxidant system and amino acid metabolism. Twenty-two proteins were found significantly altered in patients carrying variation c.1138C>T which included proteins associated with fatty acid ß-oxidation, amino acid metabolism and protein quality control system. Three proteins were found significantly regulated in both patient groups: adenylate kinase 4 (AK4), nucleoside diphosphate kinase A (NME1) and aldehyde dehydrogenase family 4 member A1 (ALDH4A1). Proteins AK4 and NME1 deserve further investigation because of their involvement in energy reprogramming, cell survival and proliferation with relevance for SCAD deficiency and related metabolic disorders.


Asunto(s)
Acil-CoA Deshidrogenasa/deficiencia , Butiril-CoA Deshidrogenasa/genética , Errores Innatos del Metabolismo Lipídico/genética , Mitocondrias/genética , Proteínas Mitocondriales/biosíntesis , Acil-CoA Deshidrogenasa/genética , Acil-CoA Deshidrogenasa/metabolismo , Butiril-CoA Deshidrogenasa/metabolismo , Células Cultivadas , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Humanos , Errores Innatos del Metabolismo Lipídico/metabolismo , Errores Innatos del Metabolismo Lipídico/patología , Masculino , Mitocondrias/patología , Estrés Oxidativo/genética , Proteómica , Espectrometría de Masas en Tándem
4.
J Proteome Res ; 10(5): 2389-96, 2011 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-21410200

RESUMEN

Deficiency of the sulfide metabolizing protein ETHE1 is the cause of ethylmalonic encephalopathy (EE), an inherited and severe metabolic disorder. To study the molecular effects of EE, we performed a proteomics study on mitochondria from cultured patient fibroblast cells. Samples from six patients were analyzed and revealed seven differentially regulated proteins compared with healthy controls. Two proteins involved in pathways of detoxification and oxidative/reductive stress were underrepresented in EE patient samples: mitochondrial superoxide dismutase (SOD2) and aldehyde dehydrogenase X (ALDH1B). Sulfide:quinone oxidoreductase (SQRDL), which takes part in the same sulfide pathway as ETHE1, was also underrepresented in EE patients. The other differentially regulated proteins were apoptosis inducing factor (AIFM1), lactate dehydrogenase (LDHB), chloride intracellular channel (CLIC4) and dimethylarginine dimethylaminohydrolase 1 (DDAH1). These proteins have been reported to be involved in encephalopathy, energy metabolism, ion transport, and nitric oxide regulation, respectively. Interestingly, oxidoreductase activity was overrepresented among the regulated proteins indicating that redox perturbation plays an important role in the molecular mechanism of EE. This observation may explain the wide range of symptoms associated with the disease, and highlights the potency of the novel gaseous mediator sulfide.


Asunto(s)
Regulación de la Expresión Génica/genética , Mitocondrias/metabolismo , Proteómica/métodos , Aldehído Deshidrogenasa/metabolismo , Familia de Aldehído Deshidrogenasa 1 , Aldehído Deshidrogenasa Mitocondrial , Amidohidrolasas/metabolismo , Factor Inductor de la Apoptosis/metabolismo , Encefalopatías Metabólicas Innatas/metabolismo , Células Cultivadas , Canales de Cloruro/metabolismo , Cromatografía Liquida , Fibroblastos/metabolismo , Humanos , L-Lactato Deshidrogenasa/metabolismo , Oxidación-Reducción , Púrpura/metabolismo , Piel/citología , Sulfuros/metabolismo , Superóxido Dismutasa/metabolismo , Espectrometría de Masas en Tándem
5.
J Inherit Metab Dis ; 34(2): 465-75, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21170680

RESUMEN

BACKGROUND: Variations in the gene ACADS, encoding the mitochondrial protein short-chain acyl CoA-dehydrogenase (SCAD), have been observed in individuals with clinical symptoms. The phenotype of SCAD deficiency (SCADD) is very heterogeneous, ranging from asymptomatic to severe, without a clear genotype-phenotype correlation, which suggests a multifactorial disorder. The pathophysiological relevance of the genetic variations in the SCAD gene is therefore disputed, and has not yet been elucidated, which is an important step in the investigation of SCADD etiology. AIM: To determine whether the disease-associated misfolding variant of SCAD protein, p.Arg107Cys, disturbs mitochondrial function. METHODS: We have developed a cell model system, stably expressing either the SCAD wild-type protein or the misfolding SCAD variant protein, p.Arg107Cys (c.319 C > T). The model system was used for investigation of SCAD with respect to expression, degree of misfolding, and enzymatic SCAD activity. Furthermore, cell proliferation and expression of selected stress response genes were investigated as well as proteomic analysis of mitochondria-enriched extracts in order to study the consequences of p.Arg107Cys protein expression using a global approach. CONCLUSIONS: We found that expression of the p.Arg107Cys variant SCAD protein gives rise to inactive misfolded protein species, eliciting a mild toxic response manifested though a decreased proliferation rate and oxidative stress, as shown by an increased demand for the mitochondrial antioxidant SOD2. In addition, we found markers of apoptotic activity in the p.Arg107Cys expressing cells, which points to a possible pathophysiological role of this variant protein.


Asunto(s)
Butiril-CoA Deshidrogenasa/metabolismo , Enfermedades Mitocondriales/metabolismo , Proteínas Mitocondriales/química , Animales , Antioxidantes/química , Butiril-CoA Deshidrogenasa/química , Butiril-CoA Deshidrogenasa/toxicidad , Proliferación Celular , Variación Genética , Genotipo , Humanos , Ratones , Estrés Oxidativo , Fenotipo , Desnaturalización Proteica , Pliegue de Proteína , Proteómica/métodos
6.
J Inherit Metab Dis ; 33(3): 211-22, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20443061

RESUMEN

Mitochondrial dysfunction and oxidative stress are central to the molecular basis of several human diseases associated with neuromuscular disabilities. We hypothesize that mitochondrial dysfunction also contributes to the neuromuscular symptoms observed in patients with ethylmalonic aciduria and homozygosity for ACADS c.625G>A-a common variant of the short-chain acyl-coenzyme A (CoA) dehydrogenase (SCAD) enzyme in the mitochondrial fatty acid oxidation pathway. This study sought to identify the specific factors that initiate cell dysfunction in these patients. We investigated fibroblast cultures from 10 patients with neuromuscular disabilities, elevated levels of ethylmalonic acid (EMA) (>50 mmol/mol creatinine), and ACADS c.625G>A homozygosity. Functional analyses, i.e., ACADS gene and protein expression as well as SCAD enzyme activity measurements, were performed together with a global nano liquid chromatography tandem mass spectroscopy (nano-LC-MS/MS)-based screening of the mitochondrial proteome in patient fibroblasts. Moreover, cell viability of patient fibroblasts exposed to menadione-induced oxidative stress was evaluated. Loss of SCAD function was detected in the patient group, most likely due to decreased ACADS gene expression and/or elimination of misfolded SCAD protein. Analysis of the mitochondrial proteome in patient fibroblasts identified a number of differentially expressed protein candidates, including reduced expression of the antioxidant superoxide dismutase 2 (SOD2). Additionally, patient fibroblasts demonstrated significantly higher sensitivity to oxidative stress than control fibroblasts. We propose that reduced mitochondrial antioxidant capacity is a potential risk factor for ACADS c.625G>A-associated ethylmalonic aciduria and that mitochondrial dysfunction contributes to the neurotoxicity observed in patients.


Asunto(s)
Antioxidantes/metabolismo , Malonatos/orina , Errores Innatos del Metabolismo/diagnóstico , Butiril-CoA Deshidrogenasa/genética , Supervivencia Celular , Preescolar , Cromatografía Liquida/métodos , Fibroblastos/metabolismo , Homocigoto , Humanos , Espectrometría de Masas/métodos , Errores Innatos del Metabolismo/genética , Mitocondrias/metabolismo , Modelos Genéticos , Estrés Oxidativo , Proteómica/métodos , Factores de Riesgo
7.
Proteome Sci ; 7: 20, 2009 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-19476632

RESUMEN

BACKGROUND: Mitochondrial proteins are central to various metabolic activities and are key regulators of apoptosis. Disturbance of mitochondrial proteins is therefore often associated with disease. Large scale protein data are required to capture the mitochondrial protein levels and mass spectrometry based proteomics is suitable for generating such data. To study the relative quantities of mitochondrial proteins in cells from cultivated human skin fibroblasts we applied a proteomic method based on nanoLC-MS/MS analysis of iTRAQ-labeled peptides. RESULTS: When fibroblast cultures were exposed to mild metabolic stress - by cultivation in galactose medium- the amount of mitochondria appeared to be maintained whereas the levels of individual proteins were altered. Proteins of respiratory chain complex I and IV were increased together with NAD+-dependent isocitrate dehydrogenase of the citric acid cycle illustrating cellular strategies to cope with altered energy metabolism. Furthermore, quantitative protein data, with a median standard error below 6%, were obtained for the following mitochondrial pathways: fatty acid oxidation, citric acid cycle, respiratory chain, antioxidant systems, amino acid metabolism, mitochondrial translation, protein quality control, mitochondrial morphology and apoptosis. CONCLUSION: The robust analytical platform in combination with a well-defined compendium of mitochondrial proteins allowed quantification of single proteins as well as mapping of entire pathways. This enabled characterization of the interplay between metabolism and stress response in human cells exposed to mild stress.

8.
Hum Genet ; 124(1): 43-56, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18523805

RESUMEN

Short-chain acyl-CoA dehydrogenase (SCAD) deficiency is an inherited disorder of mitochondrial fatty acid oxidation associated with variations in the ACADS gene and variable clinical symptoms. In addition to rare ACADS inactivating variations, two common variations, c.511C > T (p.Arg171Trp) and c.625G > A (p.Gly209Ser), have been identified in patients, but these are also present in up to 14% of normal populations leading to questions of their clinical relevance. The common variant alleles encode proteins with nearly normal enzymatic activity at physiological conditions in vitro. SCAD enzyme function, however, is impaired at increased temperature and the tendency to misfold increases under conditions of cellular stress. The present study examines misfolding of variant SCAD proteins identified in patients with SCAD deficiency. Analysis of the ACADS gene in 114 patients revealed 29 variations, 26 missense, one start codon, and two stop codon variations. In vitro import studies of variant SCAD proteins in isolated mitochondria from SCAD deficient (SCAD-/-) mice demonstrated an increased tendency of the abnormal proteins to misfold and aggregate compared to the wild-type, a phenomenon that often leads to gain-of-function cellular phenotypes. However, no correlation was found between the clinical phenotype and the degree of SCAD dysfunction. We propose that SCAD deficiency should be considered as a disorder of protein folding that can lead to clinical disease in combination with other genetic and environmental factors.


Asunto(s)
Butiril-CoA Deshidrogenasa/genética , Errores Innatos del Metabolismo/genética , Mutación Missense/fisiología , Pliegue de Proteína , Animales , Butiril-CoA Deshidrogenasa/química , Butiril-CoA Deshidrogenasa/metabolismo , Butiril-CoA Deshidrogenasa/fisiología , Dimerización , Activación Enzimática/genética , Frecuencia de los Genes , Humanos , Malonatos/metabolismo , Malonatos/orina , Errores Innatos del Metabolismo/enzimología , Errores Innatos del Metabolismo/orina , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Modelos Moleculares , Polimorfismo de Nucleótido Simple , Unión Proteica , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA