Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Biol Chem ; 291(1): 493-507, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26578513

RESUMEN

Multiple isoforms of the mitochondrial fission GTPase dynamin-related protein 1 (Drp1) arise from the alternative splicing of its single gene-encoded pre-mRNA transcript. Among these, the longer Drp1 isoforms, expressed selectively in neurons, bear unique polypeptide sequences within their GTPase and variable domains, known as the A-insert and the B-insert, respectively. Their functions remain unresolved. A comparison of the various biochemical and biophysical properties of the neuronally expressed isoforms with that of the ubiquitously expressed, and shortest, Drp1 isoform (Drp1-short) has revealed the effect of these inserts on Drp1 function. Utilizing various biochemical, biophysical, and cellular approaches, we find that the A- and B-inserts distinctly alter the oligomerization propensity of Drp1 in solution as well as the preferred curvature of helical Drp1 self-assembly on membranes. Consequently, these sequences also suppress Drp1 cooperative GTPase activity. Mitochondrial fission factor (Mff), a tail-anchored membrane protein of the mitochondrial outer membrane that recruits Drp1 to sites of ensuing fission, differentially stimulates the disparate Drp1 isoforms and alleviates the autoinhibitory effect imposed by these sequences on Drp1 function. Moreover, the differential stimulatory effects of Mff on Drp1 isoforms are dependent on the mitochondrial lipid, cardiolipin (CL). Although Mff stimulation of the intrinsically cooperative Drp1-short isoform is relatively modest, CL-independent, and even counter-productive at high CL concentrations, Mff stimulation of the much less cooperative longest Drp1 isoform (Drp1-long) is robust and occurs synergistically with increasing CL content. Thus, membrane-anchored Mff differentially regulates various Drp1 isoforms by functioning as an allosteric effector of cooperative GTPase activity.


Asunto(s)
Dinaminas/genética , GTP Fosfohidrolasas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Mitocondriales/metabolismo , Empalme del ARN/genética , Animales , Cardiolipinas/metabolismo , Membrana Celular/metabolismo , Dinaminas/metabolismo , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/ultraestructura , Guanosina Trifosfato/metabolismo , Humanos , Hidrólisis , Cinética , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/ultraestructura , Proteínas Mitocondriales/química , Proteínas Mitocondriales/ultraestructura , Multimerización de Proteína , Estructura Secundaria de Proteína , Ratas
2.
Nano Lett ; 12(3): 1372-8, 2012 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-22313341

RESUMEN

We report a novel method for the measurement of lipid nanotube radii. Membrane translocation is monitored between two nanotube-connected vesicles, during the expansion of a receiving vesicle, by observing a photobleached region of the nanotube. We elucidate nanotube radii, extracted from SPE vesicles, enabling quantification of membrane composition and lamellarity. Variances of nanotube radii were measured, showing a growth of 40-56 nm, upon increasing cholesterol content from 0 to 20%.


Asunto(s)
Recuperación de Fluorescencia tras Fotoblanqueo/métodos , Lípidos/química , Membranas Artificiales , Nanotubos/química , Nanotubos/ultraestructura , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Movimiento (Física) , Tamaño de la Partícula , Propiedades de Superficie
3.
Anal Chem ; 82(11): 4529-36, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-20443547

RESUMEN

We report on a free-standing microfluidic pipette made in poly(dimethylsiloxane) having a circulating liquid tip that generates a self-confining volume in front of the outlet channels. The method is flexible and scalable as the geometry and the size of the recirculation zone is defined by pressure, channel number, and geometry. The pipette is capable of carrying out a variety of complex fluid processing operations, such as mixing, multiplexing, or gradient generation at selected cells in cell and tissue cultures. Using an uptake assay, we show that it is possible to generate dose-response curves in situ from adherent Chinese hamster ovary cells expressing proton-activated human transient receptor potential vanilloid (hTRPV1) receptors. Using confined superfusion and cell stimulation, we could activate hTRPV1 receptors in single cells, measure the response by a patch-clamp pipette, and induce membrane bleb formation by exposing selected groups of cells to formaldehyde/dithiothreitol-containing solutions, respectively. In short, the microfluidic pipette allows for complex, contamination-free multiple-compound delivery for pharmacological screening of intact adherent cells.


Asunto(s)
Técnicas Analíticas Microfluídicas , Farmacología/instrumentación , Animales , Transporte Biológico , Células CHO , Cricetinae , Cricetulus , Dimetilpolisiloxanos/química , Relación Dosis-Respuesta a Droga , Fenómenos Electrofisiológicos , Humanos , Canales Catiónicos TRPV/metabolismo
4.
Methods Mol Biol ; 2159: 31-40, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32529361

RESUMEN

Mammalian DSPs have been historically isolated either from native tissue sources or from transfected insect cell cultures via time-consuming and cumbersome protocols often yielding protein of variable quality and quantity. A facile and highly reproducible alternative methodology involving the heterologous expression and purification of soluble mammalian DSPs from E. coli, which yields highly active and functional protein of a uniform quality and quantity, free of spurious posttranslational modifications inherent to mammalian and insect cell expression systems, is described in this chapter.


Asunto(s)
Desmoplaquinas/genética , Desmoplaquinas/aislamiento & purificación , Escherichia coli/genética , Expresión Génica , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Animales , Escherichia coli/metabolismo , Plásmidos/genética , Solubilidad , Transformación Bacteriana
5.
Sci Rep ; 8(1): 10879, 2018 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-30022112

RESUMEN

The self-assembling, mechanoenzymatic dynamin superfamily GTPase, dynamin-related protein 1 (Drp1), catalyzes mitochondrial and peroxisomal fission. Distinct intrinsically disordered regions (IDRs) in Drp1 substitute for the canonical pleckstrin homology (PH) domain and proline-rich domain (PRD) of prototypical dynamin, which cooperatively regulate endocytic vesicle scission. Whether the Drp1 IDRs function analogously to the corresponding dynamin domains however remains unknown. We show that an IDR unique to the Drp1 GTPase (G) domain, the 'extended 80-loop', albeit dissimilar in location, structure, and mechanism, functions akin to the dynamin PRD by enabling stable Drp1 mitochondrial recruitment and by suppressing Drp1 cooperative GTPase activity in the absence of specific partner-protein interactions. Correspondingly, we find that another IDR, the Drp1 variable domain (VD), in conjunction with the conserved stalk L1N loop, functions akin to the dynamin PH domain; first, in an 'auto-inhibitory' capacity that restricts Drp1 activity through a long-range steric inhibition of helical inter-rung G-domain dimerization, and second, as a 'fulcrum' for Drp1 self-assembly in the proper helical register. We show that the Drp1 VD is necessary and sufficient for specific Drp1-phospholipid interactions. We further demonstrate that the membrane-dependent VD conformational rearrangement essential for the alleviation of Drp1 auto-inhibition is contingent upon the basal GTP hydrolysis-dependent generation of Drp1 dimers from oligomers in solution. IDRs thus conformationally couple the enzymatic and membrane activities of Drp1 toward membrane fission.


Asunto(s)
Dinaminas/química , GTP Fosfohidrolasas/metabolismo , Proteínas Intrínsecamente Desordenadas/química , Proteínas Asociadas a Microtúbulos/química , Dinámicas Mitocondriales , Proteínas Mitocondriales/química , Secuencia de Aminoácidos , Dinaminas/metabolismo , GTP Fosfohidrolasas/química , Guanosina Trifosfato/metabolismo , Humanos , Hidrólisis , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Mitocondriales/metabolismo , Multimerización de Proteína , Estructura Terciaria de Proteína , Homología de Secuencia
6.
Mol Biol Cell ; 26(17): 3104-16, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26157169

RESUMEN

Cardiolipin (CL) is an atypical, dimeric phospholipid essential for mitochondrial dynamics in eukaryotic cells. Dynamin-related protein 1 (Drp1), a cytosolic member of the dynamin superfamily of large GTPases, interacts with CL and functions to sustain the balance of mitochondrial division and fusion by catalyzing mitochondrial fission. Although recent studies have indicated a role for CL in stimulating Drp1 self-assembly and GTPase activity at the membrane surface, the mechanism by which CL functions in membrane fission, if at all, remains unclear. Here, using a variety of fluorescence spectroscopic and imaging approaches together with model membranes, we demonstrate that Drp1 and CL function cooperatively in effecting membrane constriction toward fission in three distinct steps. These involve 1) the preferential association of Drp1 with CL localized at a high spatial density in the membrane bilayer, 2) the reorganization of unconstrained, fluid-phase CL molecules in concert with Drp1 self-assembly, and 3) the increased propensity of CL to transition from a lamellar, bilayer arrangement to an inverted hexagonal, nonbilayer configuration in the presence of Drp1 and GTP, resulting in the creation of localized membrane constrictions that are primed for fission. Thus we propose that Drp1 and CL function in concert to catalyze mitochondrial division.


Asunto(s)
Cardiolipinas/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Dinámicas Mitocondriales/fisiología , Proteínas Mitocondriales/metabolismo , Citocinesis , Citosol/metabolismo , Dinaminas , Humanos , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Transición de Fase , Estructura Terciaria de Proteína
7.
Mol Biol Cell ; 25(12): 1905-15, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24790094

RESUMEN

The GTPase dynamin-related protein 1 (Drp1) catalyzes mitochondrial division, but the mechanisms remain poorly understood. Much of what is attributed to Drp1's mechanism of action in mitochondrial membrane fission parallels that of prototypical dynamin in endocytic vesicle scission. Unlike the case for dynamin, however, no lipid target for Drp1 activation at the mitochondria has been identified. In addition, the oligomerization properties of Drp1 have not been well established. We show that the mitochondria-specific lipid cardiolipin is a potent stimulator of Drp1 GTPase activity, as well as of membrane tubulation. We establish further that under physiological conditions, Drp1 coexists as two morphologically distinct polymeric species, one nucleotide bound in solution and the other membrane associated, which equilibrate via a dimeric assembly intermediate. With two mutations, C300A and C505A, that shift Drp1 polymerization equilibria in opposite directions, we demonstrate that dimers, and not multimers, potentiate the reassembly and reorganization of Drp1 for mitochondrial membrane remodeling both in vitro and in vivo.


Asunto(s)
Cardiolipinas/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/fisiología , Dinámicas Mitocondriales , Membranas Mitocondriales/enzimología , Proteínas Mitocondriales/metabolismo , Animales , Células Cultivadas , Dinaminas , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/ultraestructura , Humanos , Liposomas/química , Ratones , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/ultraestructura , Membranas Mitocondriales/ultraestructura , Proteínas Mitocondriales/química , Proteínas Mitocondriales/ultraestructura , Multimerización de Proteína , Estructura Cuaternaria de Proteína
8.
Nat Protoc ; 6(6): 791-805, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21637199

RESUMEN

We describe micromanipulation and microinjection procedures for the fabrication of soft-matter networks consisting of lipid bilayer nanotubes and surface-immobilized vesicles. These biomimetic membrane systems feature unique structural flexibility and expandability and, unlike solid-state microfluidic and nanofluidic devices prepared by top-down fabrication, they allow network designs with dynamic control over individual containers and interconnecting conduits. The fabrication is founded on self-assembly of phospholipid molecules, followed by micromanipulation operations, such as membrane electroporation and microinjection, to effect shape transformations of the membrane and create a series of interconnected compartments. Size and geometry of the network can be chosen according to its desired function. Membrane composition is controlled mainly during the self-assembly step, whereas the interior contents of individual containers is defined through a sequence of microneedle injections. Networks cannot be fabricated with other currently available methods of giant unilamellar vesicle preparation (large unilamellar vesicle fusion or electroformation). Described in detail are also three transport modes, which are suitable for moving water-soluble or membrane-bound small molecules, polymers, DNA, proteins and nanoparticles within the networks. The fabrication protocol requires ∼90 min, provided all necessary preparations are made in advance. The transport studies require an additional 60-120 min, depending on the transport regime.


Asunto(s)
Biomimética/métodos , Membrana Dobles de Lípidos/síntesis química , Micromanipulación/métodos , Nanotubos/química , Transporte Biológico , Biomimética/instrumentación , Electroporación/instrumentación , Electroporación/métodos , Lípidos/química , Microinyecciones/instrumentación , Microinyecciones/métodos , Micromanipulación/instrumentación , Nanopartículas/química , Nanotubos/ultraestructura , Glycine max/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA