Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(10): 2446-2464.e22, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38582079

RESUMEN

Tauopathies are age-associated neurodegenerative diseases whose mechanistic underpinnings remain elusive, partially due to a lack of appropriate human models. Here, we engineered human induced pluripotent stem cell (hiPSC)-derived neuronal lines to express 4R Tau and 4R Tau carrying the P301S MAPT mutation when differentiated into neurons. 4R-P301S neurons display progressive Tau inclusions upon seeding with Tau fibrils and recapitulate features of tauopathy phenotypes including shared transcriptomic signatures, autophagic body accumulation, and reduced neuronal activity. A CRISPRi screen of genes associated with Tau pathobiology identified over 500 genetic modifiers of seeding-induced Tau propagation, including retromer VPS29 and genes in the UFMylation cascade. In progressive supranuclear palsy (PSP) and Alzheimer's Disease (AD) brains, the UFMylation cascade is altered in neurofibrillary-tangle-bearing neurons. Inhibiting the UFMylation cascade in vitro and in vivo suppressed seeding-induced Tau propagation. This model provides a robust platform to identify novel therapeutic strategies for 4R tauopathy.


Asunto(s)
Células Madre Pluripotentes Inducidas , Neuronas , Tauopatías , Proteínas tau , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas tau/metabolismo , Tauopatías/metabolismo , Tauopatías/patología , Neuronas/metabolismo , Neuronas/patología , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Encéfalo/metabolismo , Encéfalo/patología , Parálisis Supranuclear Progresiva/metabolismo , Parálisis Supranuclear Progresiva/patología , Parálisis Supranuclear Progresiva/genética , Diferenciación Celular , Mutación , Autofagia
2.
EMBO Rep ; 22(4): e51349, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33586859

RESUMEN

Neurexins are presynaptic adhesion molecules that shape the molecular composition of synapses. Diversification of neurexins in numerous isoforms is believed to confer synapse-specific properties by engaging with distinct ligands. For example, a subset of neurexin molecules carry a heparan sulfate (HS) glycosaminoglycan that controls ligand binding, but how this post-translational modification is controlled is not known. Here, we observe that CA10, a ligand to neurexin in the secretory pathway, regulates neurexin-HS formation. CA10 is exclusively found on non-HS neurexin and CA10 expressed in neurons is sufficient to suppress HS addition and attenuate ligand binding and synapse formation induced by ligands known to recruit HS. This effect is mediated by a direct interaction in the secretory pathway that blocks the primary step of HS biosynthesis: xylosylation of the serine residue. NMR reveals that CA10 engages residues on either side of the serine that can be HS-modified, suggesting that CA10 sterically blocks xylosyltransferase access in Golgi. These results suggest a mechanism for the regulation of HS on neurexins and exemplify a new mechanism to regulate site-specific glycosylations.


Asunto(s)
Proteínas del Tejido Nervioso , Moléculas de Adhesión de Célula Nerviosa , Proteínas de Unión al Calcio/metabolismo , Heparitina Sulfato/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Vías Secretoras , Sinapsis/metabolismo
3.
J Biol Chem ; 295(27): 9244-9262, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32434929

RESUMEN

Calsyntenin-3 (Clstn3) is a postsynaptic adhesion molecule that induces presynaptic differentiation via presynaptic neurexins (Nrxns), but whether Nrxns directly bind to Clstn3 has been a matter of debate. Here, using LC-MS/MS-based protein analysis, confocal microscopy, RNAscope assays, and electrophysiological recordings, we show that ß-Nrxns directly interact via their LNS domain with Clstn3 and Clstn3 cadherin domains. Expression of splice site 4 (SS4) insert-positive ß-Nrxn variants, but not insert-negative variants, reversed the impaired Clstn3 synaptogenic activity observed in Nrxn-deficient neurons. Consistently, Clstn3 selectively formed complexes with SS4-positive Nrxns in vivo Neuron-specific Clstn3 deletion caused significant reductions in number of excitatory synaptic inputs. Moreover, expression of Clstn3 cadherin domains in CA1 neurons of Clstn3 conditional knockout mice rescued structural deficits in excitatory synapses, especially within the stratum radiatum layer. Collectively, our results suggest that Clstn3 links to SS4-positive Nrxns to induce presynaptic differentiation and orchestrate excitatory synapse development in specific hippocampal neural circuits, including Schaffer collateral afferents.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Animales , Cadherinas/metabolismo , Proteínas de Unión al Calcio/fisiología , Cromatografía Liquida/métodos , Hipocampo/metabolismo , Proteínas de la Membrana/fisiología , Ratones , Proteínas del Tejido Nervioso/fisiología , Moléculas de Adhesión de Célula Nerviosa/fisiología , Neuronas/metabolismo , Sinapsis/metabolismo , Espectrometría de Masas en Tándem/métodos
5.
Proc Natl Acad Sci U S A ; 114(7): E1253-E1262, 2017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28154140

RESUMEN

Establishment, specification, and validation of synaptic connections are thought to be mediated by interactions between pre- and postsynaptic cell-adhesion molecules. Arguably, the best-characterized transsynaptic interactions are formed by presynaptic neurexins, which bind to diverse postsynaptic ligands. In a proteomic screen of neurexin-1 (Nrxn1) complexes immunoisolated from mouse brain, we identified carbonic anhydrase-related proteins CA10 and CA11, two homologous, secreted glycoproteins of unknown function that are predominantly expressed in brain. We found that CA10 directly binds in a cis configuration to a conserved membrane-proximal, extracellular sequence of α- and ß-neurexins. The CA10-neurexin complex is stable and stoichiometric, and results in formation of intermolecular disulfide bonds between conserved cysteine residues in neurexins and CA10. CA10 promotes surface expression of α- and ß-neurexins, suggesting that CA10 may form a complex with neurexins in the secretory pathway that facilitates surface transport of neurexins. Moreover, we observed that the Nrxn1 gene expresses from an internal 3' promoter a third isoform, Nrxn1γ, that lacks all Nrxn1 extracellular domains except for the membrane-proximal sequences and that also tightly binds to CA10. Our data expand the understanding of neurexin-based transsynaptic interaction networks by providing further insight into the interactions nucleated by neurexins at the synapse.


Asunto(s)
Encéfalo/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Neuronas/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Unión al Calcio , Secuencia Conservada , Células HEK293 , Humanos , Ligandos , Ratones
6.
J Inherit Metab Dis ; 42(5): 898-908, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31276219

RESUMEN

Exome sequencing has recently identified mutations in the gene TANGO2 (transport and Golgi organization 2) as a cause of developmental delay associated with recurrent crises involving rhabdomyolysis, cardiac arrhythmias, and metabolic derangements. The disease is not well understood, in part as the cellular function and subcellular localization of the TANGO2 protein remain unknown. Furthermore, the clinical syndrome with its heterogeneity of symptoms, signs, and laboratory findings is still being defined. Here, we describe 11 new cases of TANGO2-related disease, confirming and further expanding the previously described clinical phenotype. Patients were homozygous or compound heterozygous for previously described exonic deletions or new frameshift, splice site, and missense mutations. All patients showed developmental delay with ataxia, dysarthria, intellectual disability, or signs of spastic diplegia. Of importance, we identify two subjects (aged 12 and 17 years) who have never experienced any overt episode of the catabolism-induced metabolic crises typical for the disease. Mitochondrial complex II activity was mildly reduced in patients investigated in association with crises but normal in other patients. In one deceased patient, post-mortem autopsy revealed heterotopic neurons in the cerebral white matter, indicating a possible role for TANGO2 in neuronal migration. Furthermore, we have addressed the subcellular localization of several alternative isoforms of TANGO2, none of which were mitochondrial but instead appeared to have a primarily cytoplasmic localization. Previously described aberrations in Golgi morphology were not observed in cultured skin fibroblasts.


Asunto(s)
Translocador Nuclear del Receptor de Aril Hidrocarburo/deficiencia , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Discapacidades del Desarrollo/genética , Metabolismo Energético/genética , Discapacidad Intelectual/genética , Mitocondrias/genética , Adolescente , Translocador Nuclear del Receptor de Aril Hidrocarburo/fisiología , Ataxia/genética , Parálisis Cerebral/genética , Niño , Preescolar , Disartria/genética , Exoma , Exones , Femenino , Humanos , Masculino , Mutación , Linaje , Fenotipo , Secuenciación del Exoma
7.
J Neurosci ; 37(5): 1062-1080, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27986928

RESUMEN

Three neuronal pentraxins are expressed in brain, the membrane-bound "neuronal pentraxin receptor" (NPR) and the secreted proteins NP1 and NARP (i.e., NP2). Neuronal pentraxins bind to AMPARs at excitatory synapses and play important, well-documented roles in the activity-dependent regulation of neural circuits via this binding activity. However, it is unknown whether neuronal pentraxins perform roles in synapses beyond modulating postsynaptic AMPAR-dependent plasticity, and whether they may even act in inhibitory synapses. Here, we show that NPR expressed in non-neuronal cells potently induces formation of both excitatory and inhibitory postsynaptic specializations in cocultured hippocampal neurons. Knockdown of NPR in hippocampal neurons, conversely, dramatically decreased assembly and function of both excitatory and inhibitory postsynaptic specializations. Overexpression of NPR rescued the NPR knockdown phenotype but did not in itself change synapse numbers or properties. However, the NPR knockdown decreased the levels of NARP, whereas NPR overexpression produced a dramatic increase in the levels of NP1 and NARP, suggesting that NPR recruits and stabilizes NP1 and NARP on the presynaptic plasma membrane. Mechanistically, NPR acted in excitatory synapse assembly by binding to the N-terminal domain of AMPARs; antagonists of AMPA and GABA receptors selectively inhibited NPR-induced heterologous excitatory and inhibitory synapse assembly, respectively, but did not affect neurexin-1ß-induced synapse assembly as a control. Our data suggest that neuronal pentraxins act as signaling complexes that function as general trans-synaptic organizers of both excitatory and inhibitory synapses by a mechanism that depends, at least in part, on the activity of the neurotransmitter receptors at these synapses. SIGNIFICANCE STATEMENT: Neuronal pentraxins comprise three neuronal proteins, neuronal pentraxin receptor (NPR) which is a type-II transmembrane protein on the neuronal surface, and secreted neuronal pentraxin-1 and NARP. The general functions of neuronal pentraxins at synapses have not been explored, except for their basic AMPAR binding properties. Here, we examined the functional role of NPR at synapses because it is the only neuronal pentraxin that is anchored to the neuronal cell-surface membrane. We find that NPR is a potent inducer of both excitatory and inhibitory heterologous synapses, and that knockdown of NPR in cultured neurons decreases the density of both excitatory and inhibitory synapses. Our data suggest that NPR performs a general, previously unrecognized function as a universal organizer of synapses.


Asunto(s)
Proteína C-Reactiva/fisiología , Proteínas del Tejido Nervioso/fisiología , Sinapsis/fisiología , Animales , Proteína C-Reactiva/antagonistas & inhibidores , Proteína C-Reactiva/genética , Proteína C-Reactiva/metabolismo , Técnicas de Cocultivo , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/fisiología , Antagonistas del GABA/farmacología , Técnicas de Silenciamiento del Gen , Células HEK293 , Hipocampo/fisiología , Humanos , Ratones , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas , Técnicas de Placa-Clamp , ARN Interferente Pequeño/genética , Receptores AMPA/metabolismo , Receptores de Superficie Celular/metabolismo
8.
Hum Mol Genet ; 21(22): 4827-35, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22914740

RESUMEN

Mitochondrial dysfunction is implicated in aging and degenerative disorders such as Parkinson's disease (PD). Continuous fission and fusion of mitochondria shapes their morphology and is essential to maintain oxidative phosphorylation. Loss-of-function mutations in PTEN-induced kinase1 (PINK1) or Parkin cause a recessive form of PD and have been linked to altered regulation of mitochondrial dynamics. More specifically, the E3 ubiquitin ligase Parkin has been shown to directly regulate the levels of mitofusin 1 (Mfn1) and Mfn2, two homologous outer membrane large GTPases that govern mitochondrial fusion, but it is not known whether this is of relevance for disease pathophysiology. Here, we address the importance of Mfn1 and Mfn2 in midbrain dopamine (DA) neurons in vivo by characterizing mice with DA neuron-specific knockout of Mfn1 or Mfn2. We find that Mfn1 is dispensable for DA neuron survival and motor function. In contrast, Mfn2 DA neuron-specific knockouts develop a fatal phenotype with reduced weight, locomotor disturbances and death by 7 weeks of age. Mfn2 knockout DA neurons have spherical and enlarged mitochondria with abnormal cristae and impaired respiratory chain function. Parkin does not translocate to these defective mitochondria. Surprisingly, Mfn2 DA neuron-specific knockout mice have normal numbers of midbrain DA neurons, whereas there is a severe loss of DA nerve terminals in the striatum, accompanied by depletion of striatal DA levels. These results show that Mfn2, but not Mfn1, is required for axonal projections of DA neurons in vivo.


Asunto(s)
Axones/metabolismo , Cuerpo Estriado/metabolismo , Neuronas Dopaminérgicas/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Mesencéfalo/metabolismo , Animales , Transporte de Electrón/genética , Femenino , Genes Letales , Masculino , Ratones , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Fenotipo , Transporte de Proteínas , Ubiquitina-Proteína Ligasas/metabolismo
9.
Hum Mol Genet ; 21(5): 1078-89, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22090423

RESUMEN

A variety of observations support the hypothesis that deficiency of complex I [reduced nicotinamide-adenine dinucleotide (NADH):ubiquinone oxidoreductase] of the mitochondrial respiratory chain plays a role in the pathophysiology of Parkinson's disease (PD). However, recent data from a study using mice with knockout of the complex I subunit NADH:ubiquinone oxidoreductase iron-sulfur protein 4 (Ndufs4) has challenged this concept as these mice show degeneration of non-dopamine neurons. In addition, primary dopamine (DA) neurons derived from such mice, reported to lack complex I activity, remain sensitive to toxins believed to act through inhibition of complex I. We tissue-specifically disrupted the Ndufs4 gene in mouse heart and found an apparent severe deficiency of complex I activity in disrupted mitochondria, whereas oxidation of substrates that result in entry of electrons at the level of complex I was only mildly reduced in intact isolated heart mitochondria. Further analyses of detergent-solubilized mitochondria showed the mutant complex I to be unstable but capable of forming supercomplexes with complex I enzyme activity. The loss of Ndufs4 thus causes only a mild complex I deficiency in vivo. We proceeded to disrupt Ndufs4 in midbrain DA neurons and found no overt neurodegeneration, no loss of striatal innervation and no symptoms of Parkinsonism in tissue-specific knockout animals. However, DA homeostasis was abnormal with impaired DA release and increased levels of DA metabolites. Furthermore, Ndufs4 DA neuron knockouts were more vulnerable to the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Taken together, these findings lend in vivo support to the hypothesis that complex I deficiency can contribute to the pathophysiology of PD.


Asunto(s)
Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Complejo I de Transporte de Electrón/deficiencia , Intoxicación por MPTP/metabolismo , Mitocondrias Cardíacas/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Estabilidad de Enzimas , Homeostasis , Intoxicación por MPTP/patología , Intoxicación por MPTP/fisiopatología , Mesencéfalo/metabolismo , Mesencéfalo/patología , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Miocardio/metabolismo
10.
Proc Natl Acad Sci U S A ; 108(31): 12937-42, 2011 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-21768369

RESUMEN

Mitochondrial dysfunction is heavily implicated in Parkinson disease (PD) as exemplified by the finding of an increased frequency of respiratory chain-deficient dopamine (DA) neurons in affected patients. An inherited form of PD is caused by impaired function of Parkin, an E3 ubiquitin ligase reported to translocate to defective mitochondria in vitro to facilitate their clearance. We have developed a reporter mouse to assess mitochondrial morphology in DA neurons in vivo and show here that respiratory chain deficiency leads to fragmentation of the mitochondrial network and to the formation of large cytoplasmic bodies derived from mitochondria. Surprisingly, the dysfunctional mitochondria do not recruit Parkin in vivo, and neither the clearance of defective mitochondria nor the neurodegeneration phenotype is affected by the absence of Parkin. We also show that anterograde axonal transport of mitochondria is impaired in respiratory chain-deficient DA neurons, leading to a decreased supply of mitochondria to the axonal terminals.


Asunto(s)
Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Neuronas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Axones/metabolismo , Western Blotting , Dopamina/metabolismo , Femenino , Células HeLa , Humanos , Inmunohistoquímica , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microscopía Fluorescente , Mitocondrias/genética , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/patología , Neuronas/patología , Transporte de Proteínas , Ubiquitina-Proteína Ligasas/genética
11.
Nat Neurosci ; 27(4): 629-642, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38472649

RESUMEN

The formation of mammalian synapses entails the precise alignment of presynaptic release sites with postsynaptic receptors but how nascent cell-cell contacts translate into assembly of presynaptic specializations remains unclear. Guided by pioneering work in invertebrates, we hypothesized that in mammalian synapses, liprin-α proteins directly link trans-synaptic initial contacts to downstream steps. Here we show that, in human neurons lacking all four liprin-α isoforms, nascent synaptic contacts are formed but recruitment of active zone components and accumulation of synaptic vesicles is blocked, resulting in 'empty' boutons and loss of synaptic transmission. Interactions with presynaptic cell adhesion molecules of either the LAR-RPTP family or neurexins via CASK are required to localize liprin-α to nascent synaptic sites. Liprin-α subsequently recruits presynaptic components via a direct interaction with ELKS proteins. Thus, assembly of human presynaptic terminals is governed by a hierarchical sequence of events in which the recruitment of liprin-α proteins by presynaptic cell adhesion molecules is a critical initial step.


Asunto(s)
Sinapsis , Transmisión Sináptica , Animales , Humanos , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Neuronas/fisiología , Proteínas Portadoras/metabolismo , Terminales Presinápticos/metabolismo , Moléculas de Adhesión Celular , Mamíferos/metabolismo
12.
Cell Metab ; 7(4): 278-9, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18396129

RESUMEN

Complex I, the main entry point for electrons to the respiratory chain, is of critical importance for cellular energy homeostasis. In this issue of Cell Metabolism, Kruse and coworkers (2008) describe the first mouse knockout for a complex I structural subunit, thus advancing our understanding of complex I in disease.


Asunto(s)
Complejo I de Transporte de Electrón/metabolismo , Enfermedades Mitocondriales/metabolismo , NADH Deshidrogenasa/metabolismo , Animales , Complejo I de Transporte de Electrón/genética , Humanos , Ratones , Ratones Noqueados , Mutación , NADH Deshidrogenasa/deficiencia , NADH Deshidrogenasa/genética
13.
FEBS J ; 290(2): 252-265, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-34699130

RESUMEN

Synapses are the minimal information processing units of the brain and come in many flavors across distinct circuits. The shape and properties of a synapse depend on its molecular organisation, which is thought to largely depend on interactions between cell adhesion molecules across the synaptic cleft. An established example is that of presynaptic neurexins and their interactions with structurally diverse postsynaptic ligands: the diversity of neurexin isoforms that arise from alternative promoters and alternative splicing specify synaptic properties by dictating ligand preference. The recent finding that a majority of neurexin isoforms exist as proteoglycans with a single heparan sulfate (HS) polysaccharide adds to this complexity. Sequence motifs within the HS polysaccharide may differ between neuronal cell types to contribute specificity to its interactions, thereby expanding the coding capacity of neurexin diversity. However, an expanding number of HS-binding proteins have been found capable to recruit neurexins via the HS chain, challenging the concept of a code provided by neurexin splice isoforms. Here we discuss the possible roles of the neurexin HS in light of what is known from other HS-protein interactions, and propose a model for how the neurexin HS polysaccharide may contribute to synaptic assembly. We also discuss how the neurexin HS may be regulated by co-secreted carbonic anhydrase-related and FAM19A proteins, and highlight some key issues that should be resolved to advance the field.


Asunto(s)
Proteínas del Tejido Nervioso , Moléculas de Adhesión de Célula Nerviosa , Moléculas de Adhesión de Célula Nerviosa/genética , Moléculas de Adhesión de Célula Nerviosa/química , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Sinapsis/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Empalme Alternativo , Heparitina Sulfato/metabolismo
14.
Eur J Hum Genet ; 31(8): 887-894, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36935417

RESUMEN

Ribonuclease inhibitor 1, also known as angiogenin inhibitor 1, encoded by RNH1, is a ubiquitously expressed leucine-rich repeat protein, which is highly conserved in mammalian species. Inactivation of rnh1 in mice causes an embryonically lethal anemia, but the exact biological function of RNH1 in humans remains unknown and no human genetic disease has so far been associated with RNH1. Here, we describe a family with two out of seven siblings affected by a disease characterized by congenital cataract, global developmental delay, myopathy and psychomotor deterioration, seizures and periodic anemia associated with upper respiratory tract infections. A homozygous splice-site variant (c.615-2A > C) in RNH1 segregated with the disease. Sequencing of RNA derived from patient fibroblasts and cDNA analysis of skeletal muscle mRNA showed aberrant splicing with skipping of exon 7. Western blot analysis revealed a total lack of the RNH1 protein. Functional analysis revealed that patient fibroblasts were more sensitive to RNase A exposure, and this phenotype was reversed by transduction with a lentivirus expressing RNH1 to complement patient cells. Our results demonstrate that loss-of-function of RNH1 in humans is associated with a multiorgan developmental disease with recessive inheritance. It may be speculated that the infection-induced deterioration resulted from an increased susceptibility toward extracellular RNases and/or other inflammatory responses normally kept in place by the RNase inhibitor RNH1.


Asunto(s)
Anemia , Catarata , Humanos , Ratones , Animales , Ribonucleasas/metabolismo , Proteínas Portadoras/genética , Factores de Transcripción/metabolismo , Anemia/genética , Catarata/genética , Mamíferos/metabolismo
15.
N Engl J Med ; 361(5): 489-95, 2009 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-19641205

RESUMEN

The mitochondrial aspartate-glutamate carrier isoform 1 (AGC1), specific to neurons and muscle, supplies aspartate to the cytosol and, as a component of the malate-aspartate shuttle, enables mitochondrial oxidation of cytosolic NADH, thought to be important in providing energy for neurons in the central nervous system. We describe AGC1 deficiency, a novel syndrome characterized by arrested psychomotor development, hypotonia, and seizures in a child with a homozygous missense mutation in the solute carrier family 25, member 12, gene SLC25A12, which encodes the AGC1 protein. Functional analysis of the mutant AGC1 protein showed abolished activity. The child had global hypomyelination in the cerebral hemispheres, suggesting that impaired efflux of aspartate from neuronal mitochondria prevents normal myelin formation.


Asunto(s)
Sistemas de Transporte de Aminoácidos Acídicos/deficiencia , Antiportadores/deficiencia , Cerebro/patología , Epilepsia/genética , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Mutación Missense , Trastornos Psicomotores/genética , Ácido Aspártico/metabolismo , Preescolar , Femenino , Homocigoto , Humanos , Imagen por Resonancia Magnética , Mitocondrias/metabolismo , Hipotonía Muscular/genética , Isoformas de Proteínas , Análisis de Secuencia de ADN , Síndrome
16.
N Biotechnol ; 72: 139-148, 2022 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-36423830

RESUMEN

A homogeneous PCR-based assay for sensitive and specific detection of antibodies in serum or dried blood spots (DBS) is presented and the method is used to monitor individuals infected with or vaccinated against SARS-CoV-2. Detection probes were prepared by conjugating the recombinant spike protein subunit 1 (S1), containing the receptor binding domain (RBD) of SARS-CoV-2, to each of a pair of specific oligonucleotides. The same was done for the nucleocapsid protein (NP). Upon incubation with serum or DBS samples, the bi- or multivalency of the antibodies (IgG, IgA or IgM) brings pairs of viral proteins with their conjugated oligonucleotides in proximity, allowing the antibodies to be detected by a modified proximity extension assay (PEA). Anti-S1 and anti-NP antibodies could be detected simultaneously from one incubation reaction. This Antibody PEA (AbPEA) test uses only 1 µl of neat or up to 100,000-fold diluted serum or one ø1.2 mm disc cut from a DBS. All 100 investigated sera and 21 DBS collected prior to the COVID-19 outbreak were negative, demonstrating a 100% specificity. The area under the curve, as evaluated by Receiver Operating Characteristic (ROC) analysis reached 0.998 (95%CI: 0.993-1) for samples taken from 11 days after symptoms onset. The kinetics of antibody responses were monitored after a first and second vaccination using serially collected DBS from 14 individuals. AbPEA offers highly specific and sensitive solution-phase antibody detection without requirement for secondary antibodies, no elution step when using DBS sample in a simple procedure that lends itself to multiplex survey of antibody responses.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Bioensayo , Anticuerpos , Cinética , Oligonucleótidos , Anticuerpos Antivirales
17.
EMBO Mol Med ; 13(5): e13376, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33938619

RESUMEN

Lysosomal storage diseases, including mucopolysaccharidoses, result from genetic defects that impair lysosomal catabolism. Here, we describe two patients from two independent families presenting with progressive psychomotor regression, delayed myelination, brain atrophy, neutropenia, skeletal abnormalities, and mucopolysaccharidosis-like dysmorphic features. Both patients were homozygous for the same intronic variant in VPS16, a gene encoding a subunit of the HOPS and CORVET complexes. The variant impaired normal mRNA splicing and led to an ~85% reduction in VPS16 protein levels in patient-derived fibroblasts. Levels of other HOPS/CORVET subunits, including VPS33A, were similarly reduced, but restored upon re-expression of VPS16. Patient-derived fibroblasts showed defects in the uptake and endosomal trafficking of transferrin as well as accumulation of autophagosomes and lysosomal compartments. Re-expression of VPS16 rescued the cellular phenotypes. Zebrafish with disrupted vps16 expression showed impaired development, reduced myelination, and a similar accumulation of lysosomes and autophagosomes in the brain, particularly in glia cells. This disorder resembles previously reported patients with mutations in VPS33A, thus expanding the family of mucopolysaccharidosis-like diseases that result from mutations in HOPS/CORVET subunits.


Asunto(s)
Mucopolisacaridosis , Pez Cebra , Animales , Endosomas , Humanos , Lisosomas , Proteínas de Transporte Vesicular/genética
18.
Hum Mol Genet ; 17(10): 1418-26, 2008 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-18245781

RESUMEN

Heteroplasmic mitochondrial DNA (mtDNA) mutations (mutations present only in a subset of cellular mtDNA copies) arise de novo during the normal ageing process or may be maternally inherited in pedigrees with mitochondrial disease syndromes. A pathogenic mtDNA mutation causes respiratory chain deficiency only if the fraction of mutated mtDNA exceeds a certain threshold level. These mutations often undergo apparently random mitotic segregation and the levels of normal and mutated mtDNA can vary considerably between cells of the same tissue. In human ageing, segregation of somatic mtDNA mutations leads to mosaic respiratory chain deficiency in a variety of tissues, such as brain, heart and skeletal muscle. A similar pattern of mutation segregation with mosaic respiratory chain deficiency is seen in patients with mitochondrial disease syndromes caused by inherited pathogenic mtDNA mutations. We have experimentally addressed the role of mosaic respiratory chain deficiency in ageing and mitochondrial disease by creating mouse chimeras with a mixture of normal and respiratory chain-deficient neurons in cerebral cortex. We report here that a low proportion (>20%) of respiratory chain-deficient neurons in the forebrain are sufficient to cause symptoms, whereas premature death of the animal occurs only if the proportion is high (>60-80%). The presence of neurons with normal respiratory chain function does not only prevent mortality but also delays the age at which onset of disease symptoms occur. Unexpectedly, respiratory chain-deficient neurons have adverse effect on normal adjacent neurons and induce trans-neuronal degeneration. In summary, our study defines the minimal threshold level of respiratory chain-deficient neurons needed to cause symptoms and also demonstrate that neurons with normal respiratory chain function ameliorate disease progression. Finally, we show that respiratory chain-deficient neurons induce death of normal neurons by a trans-neuronal degeneration mechanism. These findings provide novel insights into the pathogenesis of mosaic respiratory chain deficiency in ageing and mitochondrial disease.


Asunto(s)
Envejecimiento/metabolismo , Enfermedades Mitocondriales/metabolismo , Mosaicismo/embriología , Degeneración Nerviosa/metabolismo , Envejecimiento/genética , Envejecimiento/patología , Animales , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Quimera/genética , Quimera/metabolismo , Quimerismo , Cruzamientos Genéticos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Proteínas del Grupo de Alta Movilidad/genética , Proteínas del Grupo de Alta Movilidad/metabolismo , Humanos , Locomoción , Masculino , Ratones , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/mortalidad , Enfermedades Mitocondriales/patología , Actividad Motora , Degeneración Nerviosa/genética
19.
Biochem Biophys Res Commun ; 398(4): 759-64, 2010 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-20633537

RESUMEN

LRPPRC (also called LRP130) is an RNA-binding pentatricopeptide repeat protein. LRPPRC has been recognized as a mitochondrial protein, but has also been shown to regulate nuclear gene transcription and to bind specific RNA molecules in both the nucleus and the cytoplasm. We here present a bioinformatic analysis of the LRPPRC primary sequence, which reveals that orthologs to the LRPPRC gene are restricted to metazoan cells and that all of the corresponding proteins contain mitochondrial targeting signals. To address the subcellular localization further, we have carefully analyzed LRPPRC in mammalian cells and identified a single isoform that is exclusively localized to mitochondria. The LRPPRC protein is imported to the mitochondrial matrix and its mitochondrial targeting sequence is cleaved upon entry.


Asunto(s)
Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Neoplasias/metabolismo , Animales , Secuencia Conservada , Células HeLa , Humanos , Ratones , Ratones Endogámicos C57BL , Proteínas Mitocondriales/clasificación , Proteínas Mitocondriales/genética , Proteínas de Neoplasias/clasificación , Proteínas de Neoplasias/genética , Filogenia , Estructura Terciaria de Proteína , Transporte de Proteínas , Secuencias Repetitivas de Aminoácido
20.
J Cell Biol ; 219(9)2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32706374

RESUMEN

Neurexins are presynaptic adhesion molecules that organize synapses by binding to diverse trans-synaptic ligands, but how neurexins are regulated is incompletely understood. Here we identify FAM19A/TAFA proteins, "orphan" cytokines, as neurexin regulators that interact with all neurexins, except for neurexin-1γ, via an unusual mechanism. Specifically, we show that FAM19A1-A4 bind to the cysteine-loop domain of neurexins by forming intermolecular disulfide bonds during transport through the secretory pathway. FAM19A-binding required both the cysteines of the cysteine-loop domain and an adjacent sequence of neurexins. Genetic deletion of neurexins suppressed FAM19A1 expression, demonstrating that FAM19As physiologically interact with neurexins. In hippocampal cultures, expression of exogenous FAM19A1 decreased neurexin O-glycosylation and suppressed its heparan sulfate modification, suggesting that FAM19As regulate the post-translational modification of neurexins. Given the selective expression of FAM19As in specific subtypes of neurons and their activity-dependent regulation, these results suggest that FAM19As serve as cell type-specific regulators of neurexin modifications.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Quimiocinas/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Neuronas/metabolismo , Secuencia de Aminoácidos , Animales , Células Cultivadas , Hipocampo/metabolismo , Ligandos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/metabolismo , Sinapsis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA