Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Appl Physiol (1985) ; 134(5): 1232-1239, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37022965

RESUMEN

Arterial wave reflection augments cardiac afterload increasing myocardial demands. Mathematical models and comparative physiology suggest that the lower limbs are the primary source of reflected waves; however, in vivo human evidence corroborating these observations is lacking. This study was designed to determine whether the vasculature of the lower or upper limbs contributes more to wave reflection. We hypothesized that lower limb heating will result in larger reductions in central wave reflection compared with upper limb heating due to local vasodilation of a larger microvascular bed. Fifteen healthy adults (8 females, 24 ± 3.6 yr) completed a within-subjects experimental crossover protocol with a washout period. The right upper and lower limbs were heated in a randomized order using 38°C water-perfused tubing with a 30-min break between protocols. Central wave reflection was calculated using pressure-flow relationships derived from aortic blood flow and carotid arterial pressure at baseline and after 30 min of heating. We observed a main effect of time for reflected wave amplitude (12.8 ± 2.7 to 12.2 ± 2.6 mmHg; P = 0.03) and augmentation index (-7.5 ± 8.9% to -4.5 ± 9.1%; P = 0.03). No significant main effects or interactions were noted for forward wave amplitude, reflected wave arrival time, or central relative wave reflection magnitude (all P values >0.23). Unilateral limb heating reduced reflected wave amplitude; however, the lack of a difference between conditions does not support the hypothesis that the lower limbs are the primary source of reflection. Future investigations should consider alternative vascular beds, such as splanchnic circulation.NEW & NOTEWORTHY Lower limb contributions to central wave reflections have been theorized without direct evidence in humans. In this study, mild passive heating was used to locally vasodilate either the right arm or leg to control local wave reflection sites. Heating in general reduced the reflected wave amplitude, but there were no differences between the arm or leg heating intervention, failing to provide support for the lower limbs as a primary contributor to wave reflection in humans.


Asunto(s)
Calefacción , Vasodilatación , Adulto , Femenino , Humanos , Vasodilatación/fisiología , Presión Sanguínea/fisiología , Hemodinámica/fisiología , Arterias Carótidas/fisiología , Análisis de la Onda del Pulso
2.
J Appl Physiol (1985) ; 131(3): 1157-1161, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34410844

RESUMEN

Recent observations have identified a distinct longitudinal motion pattern of the common carotid artery, where the wall oscillates along its length both with (anterograde) and against (retrograde) the direction of blood flow. The regulation of the longitudinal pattern remains largely undetermined, in part due to difficulty uncoupling local pressure and flow stimuli from upstream energy sources. In this case study of a 29-yr-old male, we examine the regulation of longitudinal wall motion from the perspective of spontaneous premature ventricular contractions (PVCs). With respect to the pre-PVC beat, during the PVC, there was an 81% reduction in carotid blood velocity (96.8 to 18.4 cm/s), a 69% reduction in pulse pressure (58 to 18 mmHg), and a 59% reduction in apical left ventricular (LV) rotation (6.9 to 2.8°) as a result of reduced LV filling time. During this time, anterograde longitudinal wall motion was unchanged (0.06 mm), whereas retrograde motion was reduced by 91% (0.75 to 0.07 mm). During the compensated post-PVC beat, there were large increases in all outcomes, except for anterograde wall motion. Taken together, there appears to be little influence of either local or upstream factors on anterograde wall motion. Although retrograde wall motion generally mirrored blood pressure, blood velocity, and upstream cardiac movement, the primary motion regulator remains unclear. In this Case Study, we provide evidence against the role of blood velocity in regulating local wall motion and reinforce the potential importance of cardiac mechanics dictating the unique longitudinal motion pattern at the common carotid artery.NEW & NOTEWORTHY Benign arrhythmias can be a useful tool to probe new hypotheses in physiology. We tested the control of longitudinal motion of the common carotid artery wall using observations from spontaneous premature ventricular contractions in a healthy male. Forwards wall motion remained unchanged despite large deviations in local blood velocity and backwards wall motion mirrored changes in pulse pressure, blood velocity, and cardiac motion, thereby revising our original hypothesis of the control of longitudinal wall motion.


Asunto(s)
Complejos Prematuros Ventriculares , Presión Sanguínea , Arterias Carótidas , Arteria Carótida Común , Ventrículos Cardíacos , Humanos , Masculino , Función Ventricular Izquierda
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA