Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 149(3): 590-604, 2012 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-22541430

RESUMEN

Mouse embryonic stem (ES) cells grown in serum exhibit greater heterogeneity in morphology and expression of pluripotency factors than ES cells cultured in defined medium with inhibitors of two kinases (Mek and GSK3), a condition known as "2i" postulated to establish a naive ground state. We show that the transcriptome and epigenome profiles of serum- and 2i-grown ES cells are distinct. 2i-treated cells exhibit lower expression of lineage-affiliated genes, reduced prevalence at promoters of the repressive histone modification H3K27me3, and fewer bivalent domains, which are thought to mark genes poised for either up- or downregulation. Nonetheless, serum- and 2i-grown ES cells have similar differentiation potential. Precocious transcription of developmental genes in 2i is restrained by RNA polymerase II promoter-proximal pausing. These findings suggest that transcriptional potentiation and a permissive chromatin context characterize the ground state and that exit from it may not require a metastable intermediate or multilineage priming.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Código de Histonas , Transcripción Genética , Animales , Diferenciación Celular , Epigénesis Genética , Genes myc , Histonas/metabolismo , Metilación , Ratones , ARN Polimerasa II/metabolismo , Transcriptoma
2.
Cell ; 150(4): 855-66, 2012 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-22901814

RESUMEN

Understanding the in vivo dynamics of protein localization and their physical interactions is important for many problems in biology. To enable systematic protein function interrogation in a multicellular context, we built a genome-scale transgenic platform for in vivo expression of fluorescent- and affinity-tagged proteins in Caenorhabditis elegans under endogenous cis regulatory control. The platform combines computer-assisted transgene design, massively parallel DNA engineering, and next-generation sequencing to generate a resource of 14,637 genomic DNA transgenes, which covers 73% of the proteome. The multipurpose tag used allows any protein of interest to be localized in vivo or affinity purified using standard tag-based assays. We illustrate the utility of the resource by systematic chromatin immunopurification and automated 4D imaging, which produced detailed DNA binding and cell/tissue distribution maps for key transcription factor proteins.


Asunto(s)
Animales Modificados Genéticamente , Proteínas de Caenorhabditis elegans/análisis , Caenorhabditis elegans/genética , Ingeniería Genética/métodos , Genoma de los Helmintos , Factores de Transcripción/análisis , Animales , Caenorhabditis elegans/química , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Factores de Transcripción/genética
3.
Genes Dev ; 33(9-10): 550-564, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30842216

RESUMEN

Epigenetic modifications can maintain or alter the inherent symmetry of the nucleosome. However, the mechanisms that deposit and/or propagate symmetry or asymmetry are not understood. Here we report that yeast Set1C/COMPASS (complex of proteins associated with Set1) is dimeric and, consequently, symmetrically trimethylates histone 3 Lys4 (H3K4me3) on promoter nucleosomes. Mutation of the dimer interface to make Set1C monomeric abolished H3K4me3 on most promoters. The most active promoters, particularly those involved in the oxidative phase of the yeast metabolic cycle, displayed H3K4me2, which is normally excluded from active promoters, and a subset of these also displayed H3K4me3. In wild-type yeast, deletion of the sole H3K4 demethylase, Jhd2, has no effect. However, in monomeric Set1C yeast, Jhd2 deletion increased H3K4me3 levels on the H3K4me2 promoters. Notably, the association of Set1C with the elongating polymerase was not perturbed by monomerization. These results imply that symmetrical H3K4 methylation is an embedded consequence of Set1C dimerism and that Jhd2 demethylates asymmetric H3K4me3. Consequently, rather than methylation and demethylation acting in opposition as logic would suggest, a dimeric methyltransferase and monomeric demethylase cooperate to eliminate asymmetry and focus symmetrical H3K4me3 onto selected nucleosomes. This presents a new paradigm for the establishment of epigenetic detail.


Asunto(s)
Epigénesis Genética/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Desmetilación , Dimerización , Eliminación de Gen , Histonas/metabolismo , Metilación , Mutagénesis , Nucleosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcripción Genética/genética
4.
EMBO J ; 41(1): e106459, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34806773

RESUMEN

In mammals, histone 3 lysine 4 methylation (H3K4me) is mediated by six different lysine methyltransferases. Among these enzymes, SETD1B (SET domain containing 1b) has been linked to syndromic intellectual disability in human subjects, but its role in the mammalian postnatal brain has not been studied yet. Here, we employ mice deficient for Setd1b in excitatory neurons of the postnatal forebrain, and combine neuron-specific ChIP-seq and RNA-seq approaches to elucidate its role in neuronal gene expression. We observe that Setd1b controls the expression of a set of genes with a broad H3K4me3 peak at their promoters, enriched for neuron-specific genes linked to learning and memory function. Comparative analyses in mice with conditional deletion of Kmt2a and Kmt2b histone methyltransferases show that SETD1B plays a more pronounced and potent role in regulating such genes. Moreover, postnatal loss of Setd1b leads to severe learning impairment, suggesting that SETD1B-dependent regulation of H3K4me levels in postnatal neurons is critical for cognitive function.


Asunto(s)
Regulación de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/metabolismo , Aprendizaje/fisiología , Neuronas/metabolismo , Animales , Animales Recién Nacidos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Núcleo Celular/metabolismo , Epigénesis Genética , Hipocampo/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Histonas/metabolismo , Integrasas/metabolismo , Memoria/fisiología , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Sitio de Iniciación de la Transcripción , Transcriptoma/genética
5.
EMBO J ; 40(8): e105776, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33687089

RESUMEN

In the mammalian embryo, epiblast cells must exit the naïve state and acquire formative pluripotency. This cell state transition is recapitulated by mouse embryonic stem cells (ESCs), which undergo pluripotency progression in defined conditions in vitro. However, our understanding of the molecular cascades and gene networks involved in the exit from naïve pluripotency remains fragmentary. Here, we employed a combination of genetic screens in haploid ESCs, CRISPR/Cas9 gene disruption, large-scale transcriptomics and computational systems biology to delineate the regulatory circuits governing naïve state exit. Transcriptome profiles for 73 ESC lines deficient for regulators of the exit from naïve pluripotency predominantly manifest delays on the trajectory from naïve to formative epiblast. We find that gene networks operative in ESCs are also active during transition from pre- to post-implantation epiblast in utero. We identified 496 naïve state-associated genes tightly connected to the in vivo epiblast state transition and largely conserved in primate embryos. Integrated analysis of mutant transcriptomes revealed funnelling of multiple gene activities into discrete regulatory modules. Finally, we delineate how intersections with signalling pathways direct this pivotal mammalian cell state transition.


Asunto(s)
Diferenciación Celular , Redes Reguladoras de Genes , Células Madre Embrionarias de Ratones/metabolismo , Animales , Células Cultivadas , Regulación del Desarrollo de la Expresión Génica , Ratones , Células Madre Embrionarias de Ratones/citología , Transcriptoma
6.
Nucleic Acids Res ; 50(3): e15, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-34792175

RESUMEN

Recombineering assisted multiplex genome editing generally uses single-stranded oligonucleotides for site directed mutational changes. It has proven highly efficient for functional screens and to optimize microbial cell factories. However, this approach is limited to relatively small mutational changes. Here, we addressed the challenges involved in the use of double-stranded DNA substrates for multiplex genome engineering. Recombineering is mediated by phage single-strand annealing proteins annealing ssDNAs into the replication fork. We apply this insight to facilitate the generation of ssDNA from the dsDNA substrate and to alter the speed of replication by elevating the available deoxynucleoside triphosphate (dNTP) levels. Intracellular dNTP concentration was elevated by ribonucleotide reductase overexpression or dNTP addition to establish double-stranded DNA Recombineering-assisted Multiplex Genome Engineering (dReaMGE), which enables rapid and flexible insertional and deletional mutagenesis at multiple sites on kilobase scales in diverse bacteria without the generation of double-strand breaks or disturbance of the mismatch repair system. dReaMGE can achieve combinatorial genome engineering works, for example, alterations to multiple biosynthetic pathways, multiple promoter or gene insertions, variations of transcriptional regulator combinations, within a few days. dReaMGE adds to the repertoire of bacterial genome engineering to facilitate discovery, functional genomics, strain optimization and directed evolution of microbial cell factories.


Asunto(s)
ADN , Ingeniería Genética , Bacterias/genética , ADN de Cadena Simple/genética , Genoma Bacteriano/genética , Oligonucleótidos/genética
7.
Nucleic Acids Res ; 50(4): 1993-2004, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35137160

RESUMEN

Histone 3 lysine 4 trimethylation (H3K4me3) is an epigenetic mark found at gene promoters and CpG islands. H3K4me3 is essential for mammalian development, yet mechanisms underlying its genomic targeting are poorly understood. H3K4me3 methyltransferases SETD1B and MLL2 (KMT2B) are essential for oogenesis. We investigated changes in H3K4me3 in Setd1b conditional knockout (cKO) oocytes using ultra-low input ChIP-seq, with comparisons to DNA methylation and gene expression analyses. H3K4me3 was redistributed in Setd1b cKO oocytes showing losses at active gene promoters associated with downregulated gene expression. Remarkably, many regions also gained H3K4me3, in particular those that were DNA hypomethylated, transcriptionally inactive and CpG-rich, which are hallmarks of MLL2 targets. Consequently, loss of SETD1B disrupts the balance between MLL2 and de novo DNA methyltransferases in determining the epigenetic landscape during oogenesis. Our work reveals two distinct, complementary mechanisms of genomic targeting of H3K4me3 in oogenesis, with SETD1B linked to gene expression and MLL2 to CpG content.


Asunto(s)
Histonas , Lisina , Animales , Islas de CpG/genética , Metilación de ADN , Histona Metiltransferasas/genética , Histonas/genética , Histonas/metabolismo , Lisina/metabolismo , Mamíferos/genética , Oogénesis/genética
8.
PLoS Genet ; 17(12): e1009250, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34860830

RESUMEN

Epigenetic mechanisms are gatekeepers for the gene expression patterns that establish and maintain cellular identity in mammalian development, stem cells and adult homeostasis. Amongst many epigenetic marks, methylation of histone 3 lysine 4 (H3K4) is one of the most widely conserved and occupies a central position in gene expression. Mixed lineage leukemia 1 (MLL1/KMT2A) is the founding mammalian H3K4 methyltransferase. It was discovered as the causative mutation in early onset leukemia and subsequently found to be required for the establishment of definitive hematopoiesis and the maintenance of adult hematopoietic stem cells. Despite wide expression, the roles of MLL1 in non-hematopoietic tissues remain largely unexplored. To bypass hematopoietic lethality, we used bone marrow transplantation and conditional mutagenesis to discover that the most overt phenotype in adult Mll1-mutant mice is intestinal failure. MLL1 is expressed in intestinal stem cells (ISCs) and transit amplifying (TA) cells but not in the villus. Loss of MLL1 is accompanied by loss of ISCs and a differentiation bias towards the secretory lineage with increased numbers and enlargement of goblet cells. Expression profiling of sorted ISCs revealed that MLL1 is required to promote expression of several definitive intestinal transcription factors including Pitx1, Pitx2, Foxa1, Gata4, Zfp503 and Onecut2, as well as the H3K27me3 binder, Bahcc1. These results were recapitulated using conditional mutagenesis in intestinal organoids. The stem cell niche in the crypt includes ISCs in close association with Paneth cells. Loss of MLL1 from ISCs promoted transcriptional changes in Paneth cells involving metabolic and stress responses. Here we add ISCs to the MLL1 repertoire and observe that all known functions of MLL1 relate to the properties of somatic stem cells, thereby highlighting the suggestion that MLL1 is a master somatic stem cell regulator.


Asunto(s)
Células Madre Adultas/fisiología , Diferenciación Celular/genética , N-Metiltransferasa de Histona-Lisina/genética , Insuficiencia Intestinal/genética , Mucosa Intestinal/patología , Proteína de la Leucemia Mieloide-Linfoide/genética , Animales , Trasplante de Médula Ósea , Metilación de ADN , Modelos Animales de Enfermedad , Epigénesis Genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Insuficiencia Intestinal/patología , Mucosa Intestinal/citología , Yeyuno/citología , Yeyuno/patología , Ratones , Ratones Transgénicos , Mutagénesis , Mutación , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Nicho de Células Madre
9.
Genes Dev ; 30(4): 408-20, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26883360

RESUMEN

Genome instability is a recurring feature of tumorigenesis. Mutation in MLL2, encoding a histone methyltransferase, is a driver in numerous different cancer types, but the mechanism is unclear. Here, we present evidence that MLL2 mutation results in genome instability. Mouse cells in which MLL2 gene deletion can be induced display elevated levels of sister chromatid exchange, gross chromosomal aberrations, 53BP1 foci, and micronuclei. Human MLL2 knockout cells are characterized by genome instability as well. Interestingly, MLL2 interacts with RNA polymerase II (RNAPII) and RECQL5, and, although MLL2 mutated cells have normal overall H3K4me levels in genes, nucleosomes in the immediate vicinity of RNAPII are hypomethylated. Importantly, MLL2 mutated cells display signs of substantial transcription stress, and the most affected genes overlap with early replicating fragile sites, show elevated levels of γH2AX, and suffer frequent mutation. The requirement for MLL2 in the maintenance of genome stability in genes helps explain its widespread role in cancer and points to transcription stress as a strong driver in tumorigenesis.


Asunto(s)
Inestabilidad Genómica/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Transcripción Genética/genética , Animales , Línea Celular , Daño del ADN/genética , N-Metiltransferasa de Histona-Lisina , Humanos , Ratones , Mutación , ARN Polimerasa II/metabolismo , RecQ Helicasas/metabolismo
10.
Development ; 147(12)2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32439762

RESUMEN

Methylation of histone 3 lysine 4 (H3K4) is a major epigenetic system associated with gene expression. In mammals there are six H3K4 methyltransferases related to yeast Set1 and fly Trithorax, including two orthologs of fly Trithorax-related: MLL3 and MLL4. Exome sequencing has documented high frequencies of MLL3 and MLL4 mutations in many types of human cancer. Despite this emerging importance, the requirements of these paralogs in mammalian development have only been incompletely reported. Here, we examined the null phenotypes to establish that MLL3 is first required for lung maturation, whereas MLL4 is first required for migration of the anterior visceral endoderm that initiates gastrulation in the mouse. This collective cell migration is preceded by a columnar-to-squamous transition in visceral endoderm cells that depends on MLL4. Furthermore, Mll4 mutants display incompletely penetrant, sex-distorted, embryonic haploinsufficiency and adult heterozygous mutants show aspects of Kabuki syndrome, indicating that MLL4 action, unlike MLL3, is dosage dependent. The highly specific and discordant functions of these paralogs in mouse development argues against their action as general enhancer factors.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/metabolismo , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Anomalías Múltiples/veterinaria , Alelos , Animales , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario , Cara/anomalías , Cara/patología , Femenino , Genotipo , Enfermedades Hematológicas/genética , Enfermedades Hematológicas/patología , Enfermedades Hematológicas/veterinaria , N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/genética , Pulmón/crecimiento & desarrollo , Pulmón/metabolismo , Masculino , Ratones , Ratones Noqueados , Mutagénesis , Embarazo , Insuficiencia Respiratoria/etiología , Factores de Tiempo , Enfermedades Vestibulares/genética , Enfermedades Vestibulares/patología , Enfermedades Vestibulares/veterinaria
11.
Mol Cell ; 53(2): 301-16, 2014 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-24462204

RESUMEN

During X chromosome inactivation (XCI), the Polycomb Repressive Complex 2 (PRC2) is thought to participate in the early maintenance of the inactive state. Although Xist RNA is essential for the recruitment of PRC2 to the X chromosome, the precise mechanism remains unclear. Here, we demonstrate that the PRC2 cofactor Jarid2 is an important mediator of Xist-induced PRC2 targeting. The region containing the conserved B and F repeats of Xist is critical for Jarid2 recruitment via its unique N-terminal domain. Xist-induced Jarid2 recruitment occurs chromosome-wide independently of a functional PRC2 complex, unlike at other parts of the genome, such as CG-rich regions, where Jarid2 and PRC2 binding are interdependent. Conversely, we show that Jarid2 loss prevents efficient PRC2 and H3K27me3 enrichment to Xist-coated chromatin. Jarid2 thus represents an important intermediate between PRC2 and Xist RNA for the initial targeting of the PRC2 complex to the X chromosome during onset of XCI.


Asunto(s)
Complejo Represivo Polycomb 2/metabolismo , ARN Largo no Codificante/fisiología , Inactivación del Cromosoma X , Cromosoma X/metabolismo , Animales , Compensación de Dosificación (Genética) , Humanos , Ratones , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/fisiología , ARN Largo no Codificante/metabolismo
12.
Nucleic Acids Res ; 48(22): e130, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33119745

RESUMEN

Biosynthesis reprograming is an important way to diversify chemical structures. The large repetitive DNA sequences existing in polyketide synthase genes make seamless DNA manipulation of the polyketide biosynthetic gene clusters extremely challenging. In this study, to replace the ethyl group attached to the C-21 of the macrolide insecticide spinosad with a butenyl group by refactoring the 79-kb gene cluster, we developed a RedEx method by combining Redαß mediated linear-circular homologous recombination, ccdB counterselection and exonuclease mediated in vitro annealing to insert an exogenous extension module in the polyketide synthase gene without any extra sequence. RedEx was also applied for seamless deletion of the rhamnose 3'-O-methyltransferase gene in the spinosad gene cluster to produce rhamnosyl-3'-desmethyl derivatives. The advantages of RedEx in seamless mutagenesis will facilitate rational design of complex DNA sequences for diverse purposes.


Asunto(s)
Eliminación de Gen , Mutagénesis Insercional/genética , Sintasas Poliquetidas/genética , Dominios Proteicos/genética , Secuencia de Bases/genética , Clonación Molecular , ADN/genética , Recombinación Homóloga/genética , Familia de Multigenes/genética
13.
Development ; 145(23)2018 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-30504434

RESUMEN

The mammalian male germline is sustained by a pool of spermatogonial stem cells (SSCs) that can transmit both genetic and epigenetic information to offspring. However, the mechanisms underlying epigenetic transmission remain unclear. The histone methyltransferase Kmt2b is highly expressed in SSCs and is required for the SSC-to-progenitor transition. At the stem-cell stage, Kmt2b catalyzes H3K4me3 at bivalent H3K27me3-marked promoters as well as at promoters of a new class of genes lacking H3K27me3, which we call monovalent. Monovalent genes are mainly activated in late spermatogenesis, whereas most bivalent genes are mainly not expressed until embryonic development. These data suggest that SSCs are epigenetically primed by Kmt2b in two distinguishable ways for the upregulation of gene expression both during the spermatogenic program and through the male germline into the embryo. Because Kmt2b is also the major H3K4 methyltransferase for bivalent promoters in embryonic stem cells, we also propose that Kmt2b has the capacity to prime stem cells epigenetically.


Asunto(s)
Embrión de Mamíferos/metabolismo , Células Germinativas/citología , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Regiones Promotoras Genéticas , Espermatogonias/citología , Células Madre/citología , Células Madre/metabolismo , Animales , Supervivencia Celular , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/genética , Masculino , Ratones , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteínas del Grupo Polycomb/metabolismo
14.
Immunity ; 36(4): 572-85, 2012 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-22483804

RESUMEN

Histone methyltransferases catalyze site-specific deposition of methyl groups, enabling recruitment of transcriptional regulators. In mammals, trimethylation of lysine 4 in histone H3, a modification localized at the transcription start sites of active genes, is catalyzed by six enzymes (SET1a and SET1b, MLL1-MLL4) whose specific functions are largely unknown. By using a genomic approach, we found that in macrophages, MLL4 (also known as Wbp7) was required for the expression of Pigp, an essential component of the GPI-GlcNAc transferase, the enzyme catalyzing the first step of glycosylphosphatidylinositol (GPI) anchor synthesis. Impaired Pigp expression in Wbp7(-/-) macrophages abolished GPI anchor-dependent loading of proteins on the cell membrane. Consistently, loss of GPI-anchored CD14, the coreceptor for lipopolysaccharide (LPS) and other bacterial molecules, markedly attenuated LPS-triggered intracellular signals and gene expression changes. These data link a histone-modifying enzyme to a biosynthetic pathway and indicate a specialized biological role for Wbp7 in macrophage function and antimicrobial response.


Asunto(s)
Glicosilfosfatidilinositoles/metabolismo , Macrófagos/metabolismo , Proteínas de la Membrana/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Animales , Membrana Celular/metabolismo , Células Cultivadas , Glicosilfosfatidilinositoles/biosíntesis , Hexosiltransferasas/biosíntesis , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Receptores de Lipopolisacáridos/biosíntesis , Lipopolisacáridos/inmunología , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Proteína de la Leucemia Mieloide-Linfoide/biosíntesis , Proteína de la Leucemia Mieloide-Linfoide/genética , Transducción de Señal
15.
Development ; 144(14): 2606-2617, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28619824

RESUMEN

Germ cell development involves major reprogramming of the epigenome to prime the zygote for totipotency. Histone 3 lysine 4 (H3K4) methylations are universal epigenetic marks mediated in mammals by six H3K4 methyltransferases related to fly Trithorax, including two yeast Set1 orthologs: Setd1a and Setd1b. Whereas Setd1a plays no role in oogenesis, we report that Setd1b deficiency causes female sterility in mice. Oocyte-specific Gdf9-iCre conditional knockout (Setd1bGdf9 cKO) ovaries develop through all stages; however, follicular loss accumulated with age and unfertilized metaphase II (MII) oocytes exhibited irregularities of the zona pellucida and meiotic spindle. Most Setd1bGdf9 cKO zygotes remained in the pronuclear stage and displayed polyspermy in the perivitelline space. Expression profiling of Setd1bGdf9 cKO MII oocytes revealed (1) that Setd1b promotes the expression of the major oocyte transcription factors including Obox1, 2, 5, 7, Meis2 and Sall4; and (2) twice as many mRNAs were upregulated than downregulated, suggesting that Setd1b also promotes the expression of negative regulators of oocyte development with multiple Zfp-KRAB factors implicated. Together, these findings indicate that Setd1b serves as maternal effect gene through regulation of the oocyte gene expression program.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Oogénesis/genética , Oogénesis/fisiología , Animales , Blastocisto/citología , Blastocisto/metabolismo , Epigénesis Genética , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Factor 9 de Diferenciación de Crecimiento/deficiencia , Factor 9 de Diferenciación de Crecimiento/genética , Factor 9 de Diferenciación de Crecimiento/metabolismo , N-Metiltransferasa de Histona-Lisina/deficiencia , Masculino , Herencia Materna , Ratones , Ratones Noqueados , Ratones Transgénicos , Oocitos/citología , Oocitos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de la Célula Individual , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Zona Pelúcida/metabolismo , Zona Pelúcida/patología , Cigoto/citología , Cigoto/metabolismo
16.
Blood ; 131(12): 1311-1324, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29348130

RESUMEN

The regenerative capacity of hematopoietic stem cells (HSCs) is limited by the accumulation of DNA damage. Conditional mutagenesis of the histone 3 lysine 4 (H3K4) methyltransferase, Setd1a, revealed that it is required for the expression of DNA damage recognition and repair pathways in HSCs. Specific deletion of Setd1a in adult long-term (LT) HSCs is compatible with adult life and has little effect on the maintenance of phenotypic LT-HSCs in the bone marrow. However, SETD1A-deficient LT-HSCs lose their transcriptional cellular identity, accompanied by loss of their proliferative capacity and stem cell function under replicative stress in situ and after transplantation. In response to inflammatory stimulation, SETD1A protects HSCs and progenitors from activation-induced attrition in vivo. The comprehensive regulation of DNA damage responses by SETD1A in HSCs is clearly distinct from the key roles played by other epigenetic regulators, including the major leukemogenic H3K4 methyltransferase MLL1, or MLL5, indicating that HSC identity and function is supported by cooperative specificities within an epigenetic framework.


Asunto(s)
Proliferación Celular , Daño del ADN , Reparación del ADN , Células Madre Hematopoyéticas/enzimología , N-Metiltransferasa de Histona-Lisina/metabolismo , Animales , N-Metiltransferasa de Histona-Lisina/genética , Ratones , Ratones Noqueados , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteína de la Leucemia Mieloide-Linfoide/metabolismo
17.
Methods ; 164-165: 67-72, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-30953756

RESUMEN

The identification of bona fide protein-protein interactions and the mapping of proteomes was greatly enhanced by protein tagging for generic affinity purification methods and analysis by mass spectrometry (AP-MS). The high quality of AP-MS data permitted the development of proteomic navigation by sequential tagging of identified interactions. However AP-MS is laborious and limited to relatively high affinity protein-protein interactions. Proximity labeling, first with the biotin ligase BirA, termed BioID, and then with ascorbate peroxidase, termed APEX, permits a greater reach into the proteome than AP-MS enabling both the identification of a wider field and weaker protein-protein interactions. This additional reach comes with the need for stringent controls. Proximity labeling also permits experiments in living cells allowing spatiotemporal investigations of the proteome. Here we discuss proximity labeling with accompanying methodological descriptions for E. coli and mammalian cells.


Asunto(s)
Mapeo de Interacción de Proteínas/métodos , Proteómica/métodos , Coloración y Etiquetado/métodos , Animales , Ascorbato Peroxidasas/metabolismo , Biotina/química , Biotina/metabolismo , Biotinilación , Ligasas de Carbono-Nitrógeno/metabolismo , Línea Celular , Escherichia coli/enzimología , Proteínas de Escherichia coli/metabolismo , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/metabolismo , Espectrometría de Masas/métodos , Mapeo de Interacción de Proteínas/instrumentación , Proteínas Represoras/metabolismo , Análisis Espacio-Temporal
18.
Nucleic Acids Res ; 46(5): e28, 2018 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-29240926

RESUMEN

The exponentially increasing volumes of DNA sequence data highlight the need for new DNA cloning methods to explore the new information. Here, we describe 'ExoCET' (Exonuclease Combined with RecET recombination) to directly clone any chosen region from bacterial and mammalian genomes with nucleotide precision into operational plasmids. ExoCET combines in vitro exonuclease and annealing with the remarkable capacity of full length RecET homologous recombination (HR) to retrieve specified regions from genomic DNA preparations. Using T4 polymerase (T4pol) as the in vitro exonuclease for ExoCET, we directly cloned large regions (>50 kb) from bacterial and mammalian genomes, including DNA isolated from blood. Employing RecET HR or Cas9 cleavage in vitro, the directly cloned region can be chosen with nucleotide precision to position, for example, a gene into an expression vector without the need for further subcloning. In addition to its utility for bioprospecting in bacterial genomes, ExoCET presents straightforward access to mammalian genomes for various applications such as region-specific DNA sequencing that retains haplotype phasing, the rapid construction of optimal, haplotypic, isogenic targeting constructs or a new way to genotype that presents advantages over Southern blotting or polymerase chain reaction. The direct cloning capacities of ExoCET present new freedoms in recombinant DNA technology.


Asunto(s)
Clonación Molecular/métodos , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Exodesoxirribonucleasas/metabolismo , Exonucleasas/metabolismo , Animales , Línea Celular Tumoral , ADN/sangre , ADN/genética , Proteínas de Unión al ADN/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Exodesoxirribonucleasas/genética , Exonucleasas/genética , Vectores Genéticos/genética , Genoma/genética , Células HEK293 , Recombinación Homóloga , Humanos , Ratones , Análisis de Secuencia de ADN
19.
Genes Dev ; 26(9): 958-73, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22549958

RESUMEN

Meiotic crossover formation involves the repair of programmed DNA double-strand breaks (DSBs) and synaptonemal complex (SC) formation. Completion of these processes must precede the meiotic divisions in order to avoid chromosome abnormalities in gametes. Enduring key questions in meiosis have been how meiotic progression and crossover formation are coordinated, whether inappropriate asynapsis is monitored, and whether asynapsis elicits prophase arrest via mechanisms that are distinct from the surveillance of unrepaired DNA DSBs. We disrupted the meiosis-specific mouse HORMAD2 (Hop1, Rev7, and Mad2 domain 2) protein, which preferentially associates with unsynapsed chromosome axes. We show that HORMAD2 is required for the accumulation of the checkpoint kinase ATR along unsynapsed axes, but not at DNA DSBs or on DNA DSB-associated chromatin loops. Consistent with the hypothesis that ATR activity on chromatin plays important roles in the quality control of meiotic prophase, HORMAD2 is required for the elimination of the asynaptic Spo11(-/-), but not the asynaptic and DSB repair-defective Dmc1(-/-) oocytes. Our observations strongly suggest that HORMAD2-dependent recruitment of ATR to unsynapsed chromosome axes constitutes a mechanism for the surveillance of asynapsis. Thus, we provide convincing evidence for the existence of a distinct asynapsis surveillance mechanism that safeguards the ploidy of the mammalian germline.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Emparejamiento Cromosómico/genética , Roturas del ADN de Doble Cadena , Animales , Proteínas de Ciclo Celular/genética , Femenino , Infertilidad Masculina/genética , Masculino , Meiosis/genética , Ratones , Ratones Mutantes , Proteínas Nucleares/genética , Oocitos/metabolismo , Proteínas de Unión a Fosfato , Complejo Sinaptonémico/genética
20.
Molecules ; 25(21)2020 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-33153073

RESUMEN

Immobile Holliday junctions represent not only the most fundamental building block of structural DNA nanotechnology but are also of tremendous importance for the in vitro investigation of genetic recombination and epigenetics. Here, we present a detailed study on the room-temperature assembly of immobile Holliday junctions with the help of the single-strand annealing protein Redß. Individual DNA single strands are initially coated with protein monomers and subsequently hybridized to form a rigid blunt-ended four-arm junction. We investigate the efficiency of this approach for different DNA/protein ratios, as well as for different DNA sequence lengths. Furthermore, we also evaluate the potential of Redß to anneal sticky-end modified Holliday junctions into hierarchical assemblies. We demonstrate the Redß-mediated annealing of Holliday junction dimers, multimers, and extended networks several microns in size. While these hybrid DNA-protein nanostructures may find applications in the crystallization of DNA-protein complexes, our work shows the great potential of Redß to aid in the synthesis of functional DNA nanostructures under mild reaction conditions.


Asunto(s)
ADN Cruciforme/química , ADN de Cadena Simple/química , Proteínas de Unión al ADN/química , ADN/química , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA