Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell Rep ; 43(3): 69, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38345745

RESUMEN

KEY MESSAGE: Water deficit-inducible synthetic promoters, SD9-2 and SD18-1, designed for use in the dicot poplar, are functional in the monocot crop, rice.


Asunto(s)
Oryza , Oryza/genética , Sequías , Plantas Modificadas Genéticamente/genética , Regiones Promotoras Genéticas/genética , Regulación de la Expresión Génica de las Plantas
2.
Plant Cell Rep ; 43(6): 162, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38837057

RESUMEN

KEY MESSAGE: A robust agroinfiltration-mediated transient gene expression method for soybean leaves was developed. Plant genotype, developmental stage and leaf age, surfactant, and Agrobacterium culture conditions are important for successful agroinfiltration. Agroinfiltration of Nicotiana benthamiana has emerged as a workhorse transient assay for plant biotechnology and synthetic biology to test the performance of gene constructs in dicot leaves. While effective, it is nonetheless often desirable to assay transgene constructs directly in crop species. To that end, we innovated a substantially robust agroinfiltration method for Glycine max (soybean), the most widely grown dicot crop plant in the world. Several factors were found to be relevant to successful soybean leaf agroinfiltration, including genotype, surfactant, developmental stage, and Agrobacterium strain and culture medium. Our optimized protocol involved a multi-step Agrobacterium culturing process with appropriate expression vectors, Silwet L-77 as the surfactant, selection of fully expanded leaves in the VC or V1 stage of growth, and 5 min of vacuum at - 85 kPa followed by a dark incubation period before plants were returned to normal growth conditions. Using this method, young soybean leaves of two lines-V17-0799DT, and TN16-5004-were high expressors for GUS, two co-expressed fluorescent protein genes, and the RUBY reporter product, betalain. This work not only represents a new research tool for soybean biotechnology, but also indicates critical parameters for guiding agroinfiltration optimization for other crop species. We speculate that leaf developmental stage might be the most critical factor for successful agroinfiltration.


Asunto(s)
Agrobacterium , Glycine max , Hojas de la Planta , Plantas Modificadas Genéticamente , Glycine max/genética , Glycine max/microbiología , Glycine max/crecimiento & desarrollo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Agrobacterium/genética , Regulación de la Expresión Génica de las Plantas , Nicotiana/genética , Vectores Genéticos/genética
3.
Plant Cell Rep ; 43(1): 22, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38150091

RESUMEN

KEY MESSAGE: A novel plant binary expression system was developed from the compactin biosynthetic pathway 27 of Penicillium citrinum ML-236B. The system achieved >fivefold activation of gene expression in 28 transgenic tobacco. A diverse and well-characterized genetic toolset is fundamental to achieve the overall goals of plant synthetic biology. To properly coordinate expression of a multigene pathway, this toolset should include binary systems that control gene expression at the level of transcription. In plants, few highly functional, orthogonal transcriptional regulators have been identified. Here, we describe the process of developing synthetic plant transcription factors using regulatory elements from the Penicillium citrinum ML-236B (compactin) pathway. This pathway contains several genes including mlcA and mlcC that are transcriptionally regulated in a dose-dependent manner by the activator mlcR. In Nicotiana benthamiana, we first expressed mlcR with several cognate synthetic promoters driving expression of GFP. Synthetic promoters contained operator sequences from the compactin gene cluster. Following identification of the most active synthetic promoter, the DNA-binding domain from mlcR was used to generate chimeric transcription factors containing variable activation domains, including QF from the Neurospora crassa Q-system. Activity was measured at both protein and RNA levels which correlated with an R2 value of 0.94. A synthetic transcription factor with a QF activation domain increased gene expression from its synthetic promoter up to sixfold in N. benthamiana. Two systems were characterized in transgenic tobacco plants. The QF-based plants maintained high expression in tobacco, increasing expression from the cognate synthetic promoter by fivefold. Transgenic plants and non-transgenic plants were morphologically indistinguishable. The framework of this study can easily be adopted for other putative transcription factors to continue improvement of the plant synthetic biology toolbox.


Asunto(s)
Penicillium , Biología Sintética , Nicotiana/genética , Plantas Modificadas Genéticamente/genética , Factores de Transcripción/genética
4.
Plant Biotechnol J ; 20(2): 360-373, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34585834

RESUMEN

In the age of synthetic biology, plastid engineering requires a nimble platform to introduce novel synthetic circuits in plants. While effective for integrating relatively small constructs into the plastome, plastid engineering via homologous recombination of transgenes is over 30 years old. Here we show the design-build-test of a novel synthetic genome structure that does not disturb the native plastome: the 'mini-synplastome'. The mini-synplastome was inspired by dinoflagellate plastome organization, which is comprised of numerous minicircles residing in the plastid instead of a single organellar genome molecule. The first mini-synplastome in plants was developed in vitro to meet the following criteria: (i) episomal replication in plastids; (ii) facile cloning; (iii) predictable transgene expression in plastids; (iv) non-integration of vector sequences into the endogenous plastome; and (v) autonomous persistence in the plant over generations in the absence of exogenous selection pressure. Mini-synplastomes are anticipated to revolutionize chloroplast biotechnology, enable facile marker-free plastid engineering, and provide an unparalleled platform for one-step metabolic engineering in plants.


Asunto(s)
Ingeniería Genética , Plastidios , Ingeniería Metabólica , Plantas/genética , Plastidios/genética , Biología Sintética , Transgenes
5.
Plant Cell Rep ; 41(2): 293-305, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34674016

RESUMEN

Proteinase inhibitors (PIs) from legumes have the potential for use as protectants in response to pests and pathogens. Legumes have evolved PIs that inhibit digestive proteinases upon herbivory resulting in delayed development, deformities, and reduced fertility of herbivorous insects. Legume PIs (serine proteinase inhibitors and cysteine proteinase inhibitors) have been overexpressed in plants to confer plant protection against herbivores. Recently, the co-expression of multiple PIs in transgenic plants enhanced host defense over single PI expression, i.e., in an additive fashion. Therefore, a synthetic PI could conceivably be designed using different inhibitory domains that may provide multifunctional protection. Little attention has yet given to expanding PI gene repertoires to improve PI efficacy for targeting multiple proteinases. Also, PIs have been shown to play an important role in response to abiotic stresses. Previously published papers have presented several aspects of strategic deployment of PIs in transgenic plants, which is the focus of this review by providing a comprehensive update of the recent progress of using PIs in transgenic plants. We also emphasize broadening the potential usefulness of PIs and their future direction in research, which will likely result in a more potent defense against herbivores.


Asunto(s)
Fabaceae/fisiología , Herbivoria , Plantas Modificadas Genéticamente , Inhibidores de Proteasas/metabolismo , Animales , Edición Génica/métodos , Regulación de la Expresión Génica de las Plantas , Insectos , Fitomejoramiento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Biología Sintética/métodos
6.
Plant Biotechnol J ; 19(4): 830-843, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33179383

RESUMEN

Reverse genetics approaches have revolutionized plant biology and agriculture. Phenomics has the prospect of bridging plant phenotypes with genes, including transgenes, to transform agricultural fields. Genetically encoded fluorescent proteins (FPs) have revolutionized plant biology paradigms in gene expression, protein trafficking and plant physiology. While the first instance of plant canopy imaging of green fluorescent protein (GFP) was performed over 25 years ago, modern phenomics has largely ignored fluorescence as a transgene expression device despite the burgeoning FP colour palette available to plant biologists. Here, we show a new platform for stand-off imaging of plant canopies expressing a wide variety of FP genes. The platform-the fluorescence-inducing laser projector (FILP)-uses an ultra-low-noise camera to image a scene illuminated by compact diode lasers of various colours, coupled with emission filters to resolve individual FPs, to phenotype transgenic plants expressing FP genes. Each of the 20 FPs screened in plants were imaged at >3 m using FILP in a laboratory-based laser range. We also show that pairs of co-expressed fluorescence proteins can be imaged in canopies. The FILP system enabled a rapid synthetic promoter screen: starting from 2000 synthetic promoters transfected into protoplasts to FILP-imaged agroinfiltrated Nicotiana benthamiana plants in a matter of weeks, which was useful to characterize a water stress-inducible synthetic promoter. FILP canopy imaging was also accomplished for stably transformed GFP potato and in a split-GFP assay, which illustrates the flexibility of the instrument for analysing fluorescence signals in plant canopies.


Asunto(s)
Nicotiana , Biología Sintética , Proteínas Fluorescentes Verdes/genética , Proteínas Luminiscentes/genética , Plantas Modificadas Genéticamente/genética , Nicotiana/genética
7.
New Phytol ; 227(1): 168-184, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32112408

RESUMEN

DNA methylation is a widespread epigenetic mark that contributes to transcriptome reprogramming during plant-pathogen interactions. However, the distinct role of DNA methylation in establishing resistant and susceptible responses remains largely unexplored. Here, we developed and used a pair of near-isogenic lines (NILs) to characterize DNA methylome landscapes of soybean roots during the susceptible and resistant interactions with soybean cyst nematode (SCN; Heterodera glycines). We also compared the methylomes of the NILs and their parents to identify introduced and stably inherited methylation variants. The genomes of the NILs were substantially differentially methylated under uninfected conditions. This difference was associated with differential gene expression that may prime the NIL responses to SCN infection. In response to SCN infection, the susceptible line exhibited reduced global methylation levels in both protein-coding genes and transposable elements, whereas the resistant line showed the opposite response, increased global methylation levels. Heritable and novel nonparental differentially methylated regions overlapping with genes associated with soybean response to SCN infection were identified and validated using transgenic hairy root system. Our analyses indicate that DNA methylation patterns associated with the susceptible and resistant interactions are highly specific and that novel and stably inherited methylation variants are of biological significance.


Asunto(s)
Quistes , Glycine max , Animales , Metilación de ADN/genética , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/genética , Glycine max/genética
8.
Plant Physiol ; 179(3): 943-957, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30679266

RESUMEN

Plant synthetic biology is a rapidly evolving field with new tools constantly emerging to drive innovation. Of particular interest is the application of synthetic biology to chloroplast biotechnology to generate plants capable of producing new metabolites, vaccines, biofuels, and high-value chemicals. Progress made in the assembly of large DNA molecules, composing multiple transcriptional units, has significantly aided in the ability to rapidly construct novel vectors for genetic engineering. In particular, Golden Gate assembly has provided a facile molecular tool for standardized assembly of synthetic genetic elements into larger DNA constructs. In this work, a complete modular chloroplast cloning system, MoChlo, was developed and validated for fast and flexible chloroplast engineering in plants. A library of 128 standardized chloroplast-specific parts (47 promoters, 38 5' untranslated regions [5'UTRs], nine promoter:5'UTR fusions, 10 3'UTRs, 14 genes of interest, and 10 chloroplast-specific destination vectors) were mined from the literature and modified for use in MoChlo assembly, along with chloroplast-specific destination vectors. The strategy was validated by assembling synthetic operons of various sizes and determining the efficiency of assembly. This method was successfully used to generate chloroplast transformation vectors containing up to seven transcriptional units in a single vector (∼10.6-kb synthetic operon). To enable researchers with limited resources to engage in chloroplast biotechnology, and to accelerate progress in the field, the entire kit, as described, is available through Addgene at minimal cost. Thus, the MoChlo kit represents a valuable tool for fast and flexible design of heterologous metabolic pathways for plastid metabolic engineering.


Asunto(s)
Cloroplastos/metabolismo , Clonación Molecular/métodos , Ingeniería Metabólica/métodos , Biotecnología/métodos , Cloroplastos/genética , Vectores Genéticos , Redes y Vías Metabólicas , Regiones Promotoras Genéticas , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Biología Sintética , Transformación Genética
9.
Int J Mol Sci ; 21(13)2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32640763

RESUMEN

Advances in molecular biology including genomics, high-throughput sequencing, and genome editing enable increasingly faster and more precise cultivar development. Identifying genes and functional markers (FMs) that are highly associated with plant phenotypic variation is a grand challenge. Functional genomics approaches such as transcriptomics, targeting induced local lesions in genomes (TILLING), homologous recombinant (HR), association mapping, and allele mining are all strategies to identify FMs for breeding goals, such as agronomic traits and biotic and abiotic stress resistance. The advantage of FMs over other markers used in plant breeding is the close genomic association of an FM with a phenotype. Thereby, FMs may facilitate the direct selection of genes associated with phenotypic traits, which serves to increase selection efficiencies to develop varieties. Herein, we review the latest methods in FM development and how FMs are being used in precision breeding for agronomic and quality traits as well as in breeding for biotic and abiotic stress resistance using marker assisted selection (MAS) methods. In summary, this article describes the use of FMs in breeding for development of elite crop cultivars to enhance global food security goals.


Asunto(s)
Productos Agrícolas/genética , Edición Génica/métodos , Genes de Plantas , Marcadores Genéticos , Genómica/métodos , Fenotipo , Fitomejoramiento/métodos , Productos Agrícolas/metabolismo , Carácter Cuantitativo Heredable
10.
Plant Cell ; 28(7): 1510-20, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27335450

RESUMEN

Plant transformation has enabled fundamental insights into plant biology and revolutionized commercial agriculture. Unfortunately, for most crops, transformation and regeneration remain arduous even after more than 30 years of technological advances. Genome editing provides novel opportunities to enhance crop productivity but relies on genetic transformation and plant regeneration, which are bottlenecks in the process. Here, we review the state of plant transformation and point to innovations needed to enable genome editing in crops. Plant tissue culture methods need optimization and simplification for efficiency and minimization of time in culture. Currently, specialized facilities exist for crop transformation. Single-cell and robotic techniques should be developed for high-throughput genomic screens. Plant genes involved in developmental reprogramming, wound response, and/or homologous recombination should be used to boost the recovery of transformed plants. Engineering universal Agrobacterium tumefaciens strains and recruiting other microbes, such as Ensifer or Rhizobium, could facilitate delivery of DNA and proteins into plant cells. Synthetic biology should be employed for de novo design of transformation systems. Genome editing is a potential game-changer in crop genetics when plant transformation systems are optimized.


Asunto(s)
Productos Agrícolas/genética , Edición Génica , Genoma de Planta/genética , Agrobacterium tumefaciens/genética , Productos Agrícolas/metabolismo , ADN de Plantas/genética , Recombinación Genética/genética , Transformación Genética/genética
11.
Nat Rev Genet ; 14(11): 781-93, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24105275

RESUMEN

Basic research has provided a much better understanding of the genetic networks and regulatory hierarchies in plants. To meet the challenges of agriculture, we must be able to rapidly translate this knowledge into generating improved plants. Therefore, in this Review, we discuss advanced tools that are currently available for use in plant biotechnology to produce new products in plants and to generate plants with new functions. These tools include synthetic promoters, 'tunable' transcription factors, genome-editing tools and site-specific recombinases. We also review some tools with the potential to enable crop improvement, such as methods for the assembly and synthesis of large DNA molecules, plant transformation with linked multigenes and plant artificial chromosomes. These genetic technologies should be integrated to realize their potential for applications to pressing agricultural and environmental problems.


Asunto(s)
Biotecnología , Productos Agrícolas/genética , ADN Nucleotidiltransferasas/genética , Ingeniería Genética/métodos , Genoma de Planta , Plantas/genética , Agricultura , Cromosomas Artificiales , ADN Nucleotidiltransferasas/metabolismo , Técnicas de Transferencia de Gen , Mutagénesis Sitio-Dirigida , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
Plant Cell Rep ; 38(10): 1329-1345, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31396683

RESUMEN

KEY MESSAGE: A novel soybean cell culture was developed, establishing a reliable and rapid promoter assay to enable high-throughput automated screening in soybean protoplasts relevant to shoot tissues in whole plants. Transient reporter gene assays can be valuable to rapidly estimate expression characteristics of heterologous promoters. The challenge for maximizing the value of such screens is to combine relevant cells or tissues with methods that can be scaled for high-throughput screening, especially for crop-rather than model species. We developed a robust and novel soybean cell suspension culture derived from leaf-derived callus for protoplast production: a platform for promoter screening. The protoplasts were transfected with promoter-reporter constructs, of which were chosen and validated against known promoter expression profiles from tissue-derived protoplasts (leaves, stems, and immature cotyledons) and gene expression data from plants. The cell culture reliably produced 2.82 ± 0.94 × 108 protoplasts/g fresh culture mass with a transfection efficiency of 31.06 ± 7.69% at 48 h post-incubation. The promoter-reporter gene DNA expression levels of transfected cell culture-derived protoplasts were most similar to that of leaf- and stem-derived protoplasts (correlation coefficient of 0.99 and 0.96, respectively) harboring the same constructs. Cell culture expression was also significantly correlated to endogenous promoter-gene expression in leaf tissues as measured by qRT-PCR (correlation coefficient of 0.80). Using the manual protocols that produced these results, we performed early stage experiments to automate protoplast transformation on a robotic system. After optimizing the protocol, we achieved up to 29% transformation efficiency using our robotic system. We conclude that the soybean cell culture-to-protoplast transformation screen is amenable to automate promoter and gene screens in soybean that could be used to accelerate discoveries relevant for crop improvement. Key features of the system include low-cost, facile protoplast isolation, and transformation for soybean shoot tissue-relevant molecular screening.


Asunto(s)
Fabaceae/metabolismo , Glycine max/metabolismo , Regiones Promotoras Genéticas/genética , Fabaceae/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Robótica , Glycine max/genética , Transformación Genética/genética
13.
Int J Mol Sci ; 20(5)2019 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-30832379

RESUMEN

The antioxidant defense system acts to maintain the equilibrium between the production of reactive oxygen species (ROS) and the elimination of toxic levels of ROS in plants. Overproduction and accumulation of ROS results in metabolic disorders and can lead to the oxidative destruction of the cell. Several stress factors cause ROS overproduction and trigger oxidative stress in crops and weeds. Recently, the involvement of the antioxidant system in weed interference and herbicide treatment in crops and weeds has been the subject of investigation. In this review, we address ROS production and plant mechanisms of defense, alterations in the antioxidant system at transcriptional and enzymatic levels in crops induced by weed interference, and herbicide exposure in crops and weeds. We also describe the mechanisms of action in herbicides that lead to ROS generation in target plants. Lastly, we discuss the relations between antioxidant systems and weed biology and evolution, as well as the interactive effects of herbicide treatment on these factors.


Asunto(s)
Productos Agrícolas/genética , Evolución Molecular , Resistencia a los Herbicidas/genética , Malezas/genética , Especies Reactivas de Oxígeno/metabolismo , Productos Agrícolas/efectos de los fármacos , Productos Agrícolas/metabolismo , Herbicidas/farmacología , Malezas/efectos de los fármacos , Malezas/metabolismo
14.
Plant Biotechnol J ; 16(1): 39-49, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28436149

RESUMEN

Sustainable utilization of lignocellulosic perennial grass feedstocks will be enabled by high biomass production and optimized cell wall chemistry for efficient conversion into biofuels. MicroRNAs are regulatory elements that modulate the expression of genes involved in various biological functions in plants, including growth and development. In greenhouse studies, overexpressing a microRNA (miR156) gene in switchgrass had dramatic effects on plant architecture and flowering, which appeared to be driven by transgene expression levels. High expressing lines were extremely dwarfed, whereas low and moderate-expressing lines had higher biomass yields, improved sugar release and delayed flowering. Four lines with moderate or low miR156 overexpression from the prior greenhouse study were selected for a field experiment to assess the relationship between miR156 expression and biomass production over three years. We also analysed important bioenergy feedstock traits such as flowering, disease resistance, cell wall chemistry and biofuel production. Phenotypes of the transgenic lines were inconsistent between the greenhouse and the field as well as among different field growing seasons. One low expressing transgenic line consistently produced more biomass (25%-56%) than the control across all three seasons, which translated to the production of 30% more biofuel per plant during the final season. The other three transgenic lines produced less biomass than the control by the final season, and the two lines with moderate expression levels also exhibited altered disease susceptibilities. Results of this study emphasize the importance of performing multiyear field studies for plants with altered regulatory transgenes that target plant growth and development.


Asunto(s)
Panicum/genética , Panicum/microbiología , Plantas Modificadas Genéticamente/genética , Biomasa , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , MicroARNs/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/microbiología
16.
Plant Cell Rep ; 37(4): 565-574, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29188422

RESUMEN

Climbing plants have unique adaptations to enable them to compete for sunlight, for which they invest minimal resources for vertical growth. Indeed, their stems bear relatively little weight, as they traverse their host substrates skyward. Climbers possess high tensile strength and flexibility, which allows them to utilize natural and manmade structures for support and growth. The climbing strategies of plants have intrigued scientists for centuries, yet our understanding about biochemical adaptations and their molecular undergirding is still in the early stages of research. Nonetheless, recent discoveries are promising, not only from a basic knowledge perspective, but also for bioinspired product development. Several adaptations, including nanoparticle and adhesive production will be reviewed, as well as practical translation of these adaptations to commercial applications. We will review the botanical literature on the modes of adaptation to climb, as well as specialized organs-and cellular innovations. Finally, recent molecular and biochemical data will be reviewed to assess the future needs and new directions for potential practical products that may be bioinspired by climbing plants.


Asunto(s)
Adaptación Fisiológica/fisiología , Calcio/metabolismo , Glicosaminoglicanos/metabolismo , Plantas/metabolismo , Luz Solar , Fenómenos Biomecánicos , Modelos Biológicos , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Mucílago de Planta/metabolismo , Plantas/clasificación , Tricomas/fisiología
17.
Plant Cell Rep ; 37(10): 1419-1429, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30039465

RESUMEN

Owing to its small size, prokaryotic-like molecular genetics, and potential for very high transgene expression, the plastid genome (plastome) is an attractive plant synthetic biology chassis for metabolic engineering. The plastome exists as a homogenous, compact, multicopy genome within multiple-specialized differentiated plastid compartments. Because of this multiplicity, transgenes can be highly expressed. For coordinated gene expression, it is the prokaryotic molecular genetics that is an especially attractive feature. Multiple genes in a metabolic pathway can be expressed in a series of operons, which are regulated at the transcriptional and translational levels with cross talk from the plant's nuclear genome. Key features of each regulatory level are reviewed, as well as some examples of plastome-enabled metabolic engineering. We also speculate about the transformative future of plastid-based synthetic biology to enable metabolic engineering in plants as well as the problems that must be solved before routine plastome-enabled synthetic circuits can be installed.


Asunto(s)
Genoma de Plastidios , Ingeniería Metabólica/métodos , Biología Sintética/métodos , Regiones no Traducidas 3' , Regiones no Traducidas 5' , Regulación de la Expresión Génica , Genoma de Planta , Regiones Promotoras Genéticas , Transgenes
18.
Plant Cell Rep ; 37(4): 587-597, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29340787

RESUMEN

KEY MESSAGE: A switchgrass vascular tissue-specific promoter (PvPfn2) and its 5'-end serial deletions drive high levels of vascular bundle transgene expression in transgenic rice. Constitutive promoters are widely used for crop genetic engineering, which can result in multiple off-target effects, including suboptimal growth and epigenetic gene silencing. These problems can be potentially avoided using tissue-specific promoters for targeted transgene expression. One particularly urgent need for targeted cell wall modification in bioenergy crops, such as switchgrass (Panicum virgatum L.), is the development of vasculature-active promoters to express cell wall-affective genes only in the specific tissues, i.e., xylem and phloem. From a switchgrass expression atlas we identified promoter sequence upstream of a vasculature-specific switchgrass profilin gene (PvPfn2), especially in roots, nodes and inflorescences. When the putative full-length (1715 bp) and 5'-end serial deletions of the PvPfn2 promoter (shortest was 413 bp) were used to drive the GUS reporter expression in stably transformed rice (Oryza sativa L.), strong vasculature-specificity was observed in various tissues including leaves, leaf sheaths, stems, and flowers. The promoters were active in both phloem and xylem. It is interesting to note that the promoter was active in many more tissues in the heterologous rice system than in switchgrass. Surprisingly, all four 5'-end promoter deletions, including the shortest fragment, had the same expression patterns as the full-length promoter and with no attenuation in GUS expression in rice. These results indicated that the PvPfn2 promoter variants are new tools to direct transgene expression specifically to vascular tissues in monocots. Of special interest is the very compact version of the promoter, which could be of use for vasculature-specific genetic engineering in monocots.


Asunto(s)
Oryza/genética , Panicum/genética , Proteínas de Plantas/genética , Haz Vascular de Plantas/genética , Profilinas/genética , Regiones Promotoras Genéticas/genética , Secuencia de Aminoácidos , Flores/genética , Flores/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Glucuronidasa/genética , Glucuronidasa/metabolismo , Oryza/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Haz Vascular de Plantas/metabolismo , Plantas Modificadas Genéticamente , Homología de Secuencia de Aminoácido , Transgenes/genética
19.
BMC Biotechnol ; 17(1): 39, 2017 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-28449656

RESUMEN

BACKGROUND: Panicum hallii Vasey (Hall's panicgrass) is a compact, perennial C4 grass in the family Poaceae, which has potential to enable bioenergy research for switchgrass (Panicum virgatum L.). Unlike P. hallii, switchgrass has a large genome, allopolyploidy, self-incompatibility, a long life cycle, and large stature-all suboptimal traits for rapid genetics research. Herein we improved tissue culture methodologies for two inbred P. hallii populations: FIL2 and HAL2, to enable further development of P. hallii as a model C4 plant. RESULTS: The optimal seed-derived callus induction medium was determined to be Murashige and Skoog (MS) medium supplemented with 40 mg L-1 L-cysteine, 300 mg L-1 L-proline, 3% sucrose, 1 g L-1 casein hydrolysate, 3 mg L-1 2,4-dichlorophenoxyacetic acid (2,4-D), and 45 µg L-1 6-benzylaminopurine (BAP), which resulted in callus induction of 51 ± 29% for FIL2 and 81 ± 19% for HAL2. The optimal inflorescence-derived callus induction was observed on MP medium (MS medium supplemented with 2 g L-1 L-proline, 3% maltose, 5 mg L-1 2,4-D, and 500 µg L-1 BAP), resulting in callus induction of 100 ± 0.0% for FIL2 and 84 ± 2.4% for HAL2. Shoot regeneration rates of 11.5 ± 0.8 shoots/gram for FIL2 and 11.3 ± 0.6 shoots/gram for HAL2 were achieved using seed-induced callus, whereas shoot regeneration rates of 26.2 ± 2.6 shoots/gram for FIL2 and 29.3 ± 3.6 shoots/gram for HAL2 were achieved from inflorescence-induced callus. Further, cell suspension cultures of P. hallii were established from seed-derived callus, providing faster generation of callus tissue compared with culture using solidified media (1.41-fold increase for FIL2 and 3.00-fold increase for HAL2). CONCLUSIONS: Aside from abbreviated tissue culture times from callus induction to plant regeneration for HAL2, we noted no apparent differences between FIL2 and HAL2 populations in tissue culture performance. For both populations, the cell suspension cultures outperformed tissue cultures on solidified media. Using the methods developed in this work, P. hallii callus was induced from seeds immediately after harvest in a shorter time and with higher frequencies than switchgrass. For clonal propagation, P. hallii callus was established from R1 inflorescences, similar to switchgrass, which further strengthens the potential of this plant as a C4 model for genetic studies. The rapid cycling (seed-to-seed time) and ease of culture, further demonstrate the potential utility of P. hallii as a C4 model plant.


Asunto(s)
Medios de Cultivo/química , Panicum/crecimiento & desarrollo , Técnicas de Cultivo de Tejidos/métodos , Medios de Cultivo/farmacología , Germinación/efectos de los fármacos , Inflorescencia/crecimiento & desarrollo , Modelos Biológicos , Células Vegetales/efectos de los fármacos , Células Vegetales/fisiología , Semillas/crecimiento & desarrollo
20.
BMC Biotechnol ; 17(1): 40, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28464851

RESUMEN

BACKGROUND: Switchgrass is C4 perennial grass species that is being developed as a cellulosic bioenergy feedstock. It is wind-pollinated and considered to be an obligate outcrosser. Genetic engineering has been used to alter cell walls for more facile bioprocessing and biofuel yield. Gene flow from transgenic cultivars would likely be of regulatory concern. In this study we investigated pollen-mediated gene flow from transgenic to nontransgenic switchgrass in a 3-year field experiment performed in Oliver Springs, Tennessee, U.S.A. using a modified Nelder wheel design. The planted area (0.6 ha) contained sexually compatible pollen source and pollen receptor switchgrass plants. One hundred clonal switchgrass 'Alamo' plants transgenic for an orange-fluorescent protein (OFP) and hygromycin resistance were used as the pollen source; whole plants, including pollen, were orange-fluorescent. To assess pollen movement, pollen traps were placed at 10 m intervals from the pollen-source plot in the four cardinal directions extending to 20 m, 30 m, 30 m, and 100 m to the north, south, west, and east, respectively. To assess pollination rates, nontransgenic 'Alamo 2' switchgrass clones were planted in pairs adjacent to pollen traps. RESULTS: In the eastward direction there was a 98% decrease in OFP pollen grains from 10 to 100 m from the pollen-source plot (Poisson regression, F1,8 = 288.38, P < 0.0001). At the end of the second and third year, 1,820 F1 seeds were collected from pollen recipient-plots of which 962 (52.9%) germinated and analyzed for their transgenic status. Transgenic progeny production detected in each pollen-recipient plot decreased with increased distance from the edge of the transgenic plot (Poisson regression, F1,15 = 12.98, P < 0.003). The frequency of transgenic progeny detected in the eastward plots (the direction of the prevailing wind) ranged from 79.2% at 10 m to 9.3% at 100 m. CONCLUSIONS: In these experiments we found transgenic pollen movement and hybridization rates to be inversely associated with distance. However, these data suggest pollen-mediated gene flow is likely to occur up to, at least, 100 m. This study gives baseline data useful to determine isolation distances and other management practices should transgenic switchgrass be grown commercially in relevant environments.


Asunto(s)
Flujo Génico , Genes de Plantas , Panicum/genética , Polen/genética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Panicum/crecimiento & desarrollo , Panicum/fisiología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/fisiología , Distribución de Poisson , Semillas/crecimiento & desarrollo , Semillas/fisiología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA