Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Genet ; 10(2): e1004120, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24586182

RESUMEN

Large-scale proteomic analyses in Escherichia coli have documented the composition and physical relationships of multiprotein complexes, but not their functional organization into biological pathways and processes. Conversely, genetic interaction (GI) screens can provide insights into the biological role(s) of individual gene and higher order associations. Combining the information from both approaches should elucidate how complexes and pathways intersect functionally at a systems level. However, such integrative analysis has been hindered due to the lack of relevant GI data. Here we present a systematic, unbiased, and quantitative synthetic genetic array screen in E. coli describing the genetic dependencies and functional cross-talk among over 600,000 digenic mutant combinations. Combining this epistasis information with putative functional modules derived from previous proteomic data and genomic context-based methods revealed unexpected associations, including new components required for the biogenesis of iron-sulphur and ribosome integrity, and the interplay between molecular chaperones and proteases. We find that functionally-linked genes co-conserved among γ-proteobacteria are far more likely to have correlated GI profiles than genes with divergent patterns of evolution. Overall, examining bacterial GIs in the context of protein complexes provides avenues for a deeper mechanistic understanding of core microbial systems.


Asunto(s)
Epistasis Genética , Escherichia coli/genética , Complejos Multiproteicos/genética , Proteómica , Citoplasma/metabolismo , Genoma Bacteriano , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Complejos Multiproteicos/metabolismo , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Mapas de Interacción de Proteínas
2.
RNA ; 17(11): 2026-38, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21960487

RESUMEN

YjeQ is a protein broadly conserved in bacteria containing an N-terminal oligonucleotide/oligosaccharide fold (OB-fold) domain, a central GTPase domain, and a C-terminal zinc-finger domain. YjeQ binds tightly and stoichiometrically to the 30S subunit, which stimulates its GTPase activity by 160-fold. Despite growing evidence for the involvement of the YjeQ protein in bacterial 30S subunit assembly, the specific function and mechanism of this protein remain unclear. Here, we report the costructure of YjeQ with the 30S subunit obtained by cryo-electron microscopy. The costructure revealed that YjeQ interacts simultaneously with helix 44, the head and the platform of the 30S subunit. This binding location of YjeQ in the 30S subunit suggests a chaperone role in processing of the 3' end of the rRNA as well as in mediating the correct orientation of the main domains of the 30S subunit. In addition, the YjeQ binding site partially overlaps with the interaction site of initiation factors 2 and 3, and upon binding, YjeQ covers three inter-subunit bridges that are important for the association of the 30S and 50S subunits. Hence, our structure suggests that YjeQ may assist in ribosome maturation by preventing premature formation of the translation initiation complex and association with the 50S subunit. Together, these results support a role for YjeQ in the late stages of 30S maturation.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/ultraestructura , Escherichia coli/química , Escherichia coli/ultraestructura , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/ultraestructura , Subunidades Ribosómicas Pequeñas Bacterianas/química , Subunidades Ribosómicas Pequeñas Bacterianas/ultraestructura , Microscopía por Crioelectrón , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , GTP Fosfohidrolasas/metabolismo , Modelos Moleculares , Unión Proteica , Estructura Terciaria de Proteína , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo
3.
RNA ; 17(4): 697-709, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21303937

RESUMEN

Four decades after early in vitro assembly studies demonstrated that ribosome assembly is a controlled process, our understanding of ribosome assembly is still incomplete. Just as structure determination has been so important to understanding ribosome function, so too will it be critical to sorting out the assembly process. Here, we used a viable deletion in the yjeQ gene, a recognized ribosome assembly factor, to isolate and structurally characterize immature 30S subunits assembled in vivo. These small ribosome subunits contained unprocessed 17S rRNA and lacked some late ribosomal proteins. Cryo-electron microscopy reconstructions revealed that the presence of precursor sequences in the rRNA induces a severe distortion in the 3' minor domain of the subunit involved in the decoding of mRNA and interaction with the large ribosome subunit. These findings suggest that rRNA processing events induce key local conformational changes directing the structure toward the mature assembly. We concluded that rRNA processing, folding, and the entry of tertiary r-proteins are interdependent events in the late stages of 30S subunit assembly. In addition, we demonstrate how studies of emerging assembly factors in ribosome biogenesis can help to elucidate the path of subunit assembly in vivo.


Asunto(s)
Escherichia coli/metabolismo , ARN Ribosómico/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Microscopía por Crioelectrón , Escherichia coli/genética , Proteínas de Escherichia coli/genética , GTP Fosfohidrolasas/genética , Eliminación de Gen , Estructura Secundaria de Proteína , ARN Ribosómico/química , ARN Ribosómico/genética , Subunidades Ribosómicas Pequeñas Bacterianas/química , Subunidades Ribosómicas Pequeñas Bacterianas/ultraestructura
4.
Cell Rep ; 17(3): 904-916, 2016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27732863

RESUMEN

Bacterial protein synthesis is an essential, conserved, and environmentally responsive process. Yet, many of its components and dependencies remain unidentified. To address this gap, we used quantitative synthetic genetic arrays to map functional relationships among >48,000 gene pairs in Escherichia coli under four culture conditions differing in temperature and nutrient availability. The resulting data provide global functional insights into the roles and associations of genes, pathways, and processes important for efficient translation, growth, and environmental adaptation. We predict and independently verify the requirement of unannotated genes for normal translation, including a previously unappreciated role of YhbY in 30S biogenesis. Dynamic changes in the patterns of genetic dependencies across the four growth conditions and data projections onto other species reveal overarching functional and evolutionary pressures impacting the translation system and bacterial fitness, underscoring the utility of systematic screens for investigating protein synthesis, adaptation, and evolution.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Pruebas Genéticas , Biosíntesis de Proteínas , Células Cultivadas , Ambiente , Epistasis Genética , Redes Reguladoras de Genes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA