Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(20)2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34681717

RESUMEN

The immunosuppressive character of head and neck cancers may explain the relatively low response rates to antibody therapy targeting a tumor antigen, such as cetuximab, and anti-PD-1 checkpoint inhibition. Immunostimulatory agents that overcome tumor-derived inhibitory signals could augment therapeutic efficacy, thereby enhancing tumor elimination and improving patient survival. Here, we demonstrate that cetuximab treatment combined with immunostimulatory agonists for Toll-like receptor (TLR) 2 induces profound immune responses. Natural killer (NK) cells, isolated from healthy individuals or patients with head and neck cancer, harbored enhanced cytotoxic capacity and increased tumor-killing potential in vitro. Additionally, combination treatment increased the release of several pro-inflammatory cytokines and chemokines by NK cells. Tumor-bearing mice that received cetuximab and the TLR2 ligand Pam3CSK4 showed increased infiltration of immune cells into the tumors compared to mice that received cetuximab monotherapy, resulting in a significant delay in tumor growth or even complete tumor regression. Moreover, combination treatment resulted in improved overall survival in vivo. In conclusion, combining tumor-targeting antibody-based immunotherapy with TLR stimulation represents a promising treatment strategy to improve the clinical outcomes of cancer patients. This treatment could well be applied together with other therapeutic strategies such as anti-PD-(L)1 checkpoint inhibition to further overcome immunosuppression.


Asunto(s)
Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Neoplasias de Cabeza y Cuello/terapia , Células Asesinas Naturales/inmunología , Receptor Toll-Like 2/agonistas , Animales , Línea Celular Tumoral , Cetuximab/farmacología , Cetuximab/uso terapéutico , Citocinas/metabolismo , Quimioterapia Combinada , Femenino , Humanos , Inmunoterapia , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Lipopéptidos/farmacología , Lipopéptidos/uso terapéutico , Ratones , Ratones Desnudos , Receptores de IgG/agonistas , Receptores de IgG/metabolismo , Receptor Toll-Like 2/metabolismo , Trasplante Heterólogo
2.
J Biol Chem ; 294(44): 16297-16308, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31519750

RESUMEN

Herpesviruses can rewire cellular signaling in host cells by expressing viral G protein-coupled receptors (GPCRs). These viral receptors exhibit homology to human chemokine receptors, but some display constitutive activity and promiscuous G protein coupling. Human cytomegalovirus (HCMV) has been detected in multiple cancers, including glioblastoma, and its genome encodes four GPCRs. One of these receptors, US28, is expressed in glioblastoma and possesses constitutive activity and oncomodulatory properties. UL33, another HCMV-encoded GPCR, also displays constitutive signaling via Gαq, Gαi, and Gαs proteins. However, little is known about the nature and functional effects of UL33-driven signaling. Here, we assessed UL33's signaling repertoire and oncomodulatory potential. UL33 activated multiple proliferative, angiogenic, and inflammatory signaling pathways in HEK293T and U251 glioblastoma cells. Notably, upon infection, UL33 contributed to HCMV-mediated STAT3 activation. Moreover, UL33 increased spheroid growth in vitro and accelerated tumor growth in different in vivo tumor models, including an orthotopic glioblastoma xenograft model. UL33-mediated signaling was similar to that stimulated by US28; however, UL33-induced tumor growth was delayed. Additionally, the spatiotemporal expression of the two receptors only partially overlapped in HCMV-infected glioblastoma cells. In conclusion, our results unveil that UL33 has broad signaling capacity and provide mechanistic insight into its functional effects. UL33, like US28, exhibits oncomodulatory properties, elicited via constitutive activation of multiple signaling pathways. UL33 and US28 might contribute to HCMV's oncomodulatory effects through complementing and converging cellular signaling, and hence UL33 may represent a promising drug target in HCMV-associated malignancies.


Asunto(s)
Receptores de Quimiocina/metabolismo , Proteínas Virales/metabolismo , Animales , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Citomegalovirus/metabolismo , Proteínas de Unión al GTP/metabolismo , Glioblastoma/patología , Células HEK293 , Humanos , Ratones , Células 3T3 NIH , Receptores de Quimiocina/genética , Receptores Virales/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal
3.
J Biol Chem ; 288(41): 29562-72, 2013 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-23979133

RESUMEN

The chemokine receptor CXCR7, belonging to the membrane-bound G protein-coupled receptor superfamily, is expressed in several tumor types. Inhibition of CXCR7 with either small molecules or small interference (si)RNA has shown promising therapeutic benefits in several tumor models. With the increased interest and effectiveness of biologicals inhibiting membrane-bound receptors we made use of the "Nanobody platform" to target CXCR7. Previously we showed that Nanobodies, i.e. immunoglobulin single variable domains derived from naturally occurring heavy chain-only camelids antibodies, represent new biological tools to efficiently tackle difficult drug targets such as G protein-coupled receptors. In this study we developed and characterized highly selective and potent Nanobodies against CXCR7. Interestingly, the CXCR7-targeting Nanobodies displayed antagonistic properties in contrast with previously reported CXCR7-targeting agents. Several high affinity CXCR7-specific Nanobodies potently inhibited CXCL12-induced ß-arrestin2 recruitment in vitro. A wide variety of tumor biopsies was profiled, showing for the first time high expression of CXCR7 in head and neck cancer. Using a patient-derived CXCR7-expressing head and neck cancer xenograft model in nude mice, tumor growth was inhibited by CXCR7-targeting Nanobody therapy. Mechanistically, CXCR7-targeting Nanobodies did not inhibit cell cycle progression but instead reduced secretion of the angiogenic chemokine CXCL1 from head and neck cancer cells in vitro, thus acting here as inverse agonists, and subsequent angiogenesis in vivo. Hence, with this novel class of CXCR7 inhibitors, we further substantiate the therapeutic relevance of targeting CXCR7 in head and neck cancer.


Asunto(s)
Neoplasias de Cabeza y Cuello/inmunología , Receptores CXCR/inmunología , Anticuerpos de Dominio Único/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Arrestinas/inmunología , Arrestinas/metabolismo , Unión Competitiva/inmunología , Camélidos del Nuevo Mundo/inmunología , Línea Celular Tumoral , Quimiocina CXCL12/farmacología , Femenino , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/prevención & control , Humanos , Ratones , Ratones Desnudos , Células 3T3 NIH , Ensayo de Unión Radioligante , Receptores CXCR/genética , Receptores CXCR/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Anticuerpos de Dominio Único/farmacología , Carga Tumoral/efectos de los fármacos , Carga Tumoral/inmunología , beta-Arrestinas
4.
Mol Cancer Ther ; 23(2): 187-198, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37828725

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) is a solid tumor type that arises in the squamous epithelial cells lining the mucosal surfaces of the upper aerodigestive tract. Long-term survival of patients with advanced disease stage remains disappointing with current treatment options. We show that tissue factor is abundantly expressed on patient-derived HNSCC cell lines, xenograft tumor material, and tumor biopsies from patients with HNSCC. Tisotumab vedotin (TV) is an antibody-drug conjugate (ADC) directed to tissue factor, a protein expressed in many solid tumors. HNSCC cells and xenograft tumors were efficiently eliminated in vitro and in vivo with TV-monotherapy compared with treatment with a control antibody conjugated to monomethyl auristatin E (MMAE). Antitumor activity of TV was also tested in vivo in combination with chemoradiotherapy, standard of care for patients with advanced stage HNSCC tumors outside the oral cavity. Preclinical studies showed that by adding TV to chemoradiotherapy, survival was markedly improved, and TV, not radiotherapy or chemotherapy, was the main driver of antitumor activity. Interestingly, TV-induced cell death in xenograft tumors showed an influx of macrophages indicative of a potential immune-mediated mode-of-action. In conclusion, on the basis of these preclinical data, TV may be a novel treatment modality for patients suffering from head and neck cancer and is hypothesized to improve efficacy of chemoradiotherapy. SIGNIFICANCE: This work shows preclinical in vitro and in vivo antitumor activity of the antibody-drug conjugate Tisotumab vedotin in head and neck cancer models, and enhanced activity in combination with chemoradiotherapy, supporting further clinical development for this cancer type.


Asunto(s)
Neoplasias de Cabeza y Cuello , Inmunoconjugados , Humanos , Línea Celular Tumoral , Quimioradioterapia , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Tromboplastina , Ensayos Antitumor por Modelo de Xenoinjerto , Animales
5.
Cells ; 13(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38667326

RESUMEN

Precancerous cells in the oral cavity may appear as oral potentially malignant disorders, but they may also present as dysplasia without visual manifestation in tumor-adjacent tissue. As it is currently not possible to prevent the malignant transformation of these oral precancers, new treatments are urgently awaited. Here, we generated precancer culture models using a previously established method for the generation of oral keratinocyte cultures and incorporated CRISPR/Cas9 editing. The generated cell lines were used to investigate the efficacy of a set of small molecule inhibitors. Tumor-adjacent mucosa and oral leukoplakia biopsies were cultured and genetically characterized. Mutations were introduced in CDKN2A and TP53 using CRISPR/Cas9 and combined with the ectopic activation of telomerase to generate cell lines with prolonged proliferation. The method was tested in normal oral keratinocytes and tumor-adjacent biopsies and subsequently applied to a large set of oral leukoplakia biopsies. Finally, a subset of the immortalized cell lines was used to assess the efficacy of a set of small molecule inhibitors. Culturing and genomic engineering was highly efficient for normal and tumor-adjacent oral keratinocytes, but success rates in oral leukoplakia were remarkably low. Knock-out of CDKN2A in combination with either the activation of telomerase or knock-out of TP53 seemed a prerequisite for immortalization. Prolonged culturing was accompanied by additional genetic aberrations in these cultures. The generated cell lines were more sensitive than normal keratinocytes to small molecule inhibitors of previously identified targets. In conclusion, while very effective for normal keratinocytes and tumor-adjacent biopsies, the success rate of oral leukoplakia cell culturing methods was very low. Genomic engineering enabled the prolonged culturing of OL-derived keratinocytes but was associated with acquired genetic changes. Further studies are required to assess to what extent the immortalized cultures faithfully represent characteristics of the cells in vivo.


Asunto(s)
Queratinocitos , Leucoplasia Bucal , Neoplasias de la Boca , Humanos , Queratinocitos/metabolismo , Queratinocitos/patología , Neoplasias de la Boca/genética , Neoplasias de la Boca/patología , Leucoplasia Bucal/genética , Leucoplasia Bucal/patología , Telomerasa/genética , Telomerasa/metabolismo , Ingeniería Genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Sistemas CRISPR-Cas/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Mucosa Bucal/patología , Lesiones Precancerosas/patología , Lesiones Precancerosas/genética
6.
EJNMMI Res ; 14(1): 22, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38424294

RESUMEN

BACKGROUND: Cisplatin- based chemoradiotherapy is a crucial pillar in the treatment of HNSCC. The use of cisplatin comes with high toxicity rates as 35% of patients cannot sustain the planned dose while response is unpredictable. Unfortunately, there are no clinically applicable biomarkers to predict response. Based on the association of response with the number of DNA adducts and the involved molecular pathway to resolve cisplatin-induced DNA crosslinks in HNSCC, [195mPt]cisplatin (CISSPECT®) might have potential to monitor drug uptake and retention before treatment, and predict cisplatin response. The aim of this study is to investigate this concept by analyzing uptake, retention and biodistribution of [195mPt]cisplatin between known cisplatin-sensitive (VU-SCC-1131) and -resistant (VU-SCC-OE) HNSCC cell lines in vitro and xenografted in mice in vivo. RESULTS: By a variety of experiments in vitro, including cell cycle analyses, and in vivo, the sensitivity of cell line VU-SCC-1131 and resistance of cell line VU-SCC-OE for cisplatin was demonstrated. VU-SCC-OE was able to accumulate more [195mPt]cisplatin in the DNA, and showed an increased capability to repair [195mPt]cisplatin crosslinks compared to VU-SCC-1131. Notably, DNA binding of cisplatin increased even when cisplatin was removed from the medium, likely from intracellular sources. In vivo, [195mPt]cisplatin showed a rapid biodistribution to the large organs such as the liver, with no differences between intravenous and intraperitoneal administration. Most circulating [195mPt]cisplatin was cleared by renal filtration, and accumulation in kidney and liver remained high. Uptake in xenografts was rapid (blood:tumor ratio; 1:1) and highest after 1 h, while decreasing after 6 h in line with the concentration in the blood. Remarkably, there was no significant difference in uptake or retention between xenografts of the cisplatin-sensitive and -resistant cell line. CONCLUSION: VU-SCC-1131 with a known FA deficiency and VU-SCC-OE displayed a significant difference in sensitivity to and recovery from cisplatin treatment, due to S-phase problems in VU-SCC-1131 at low doses, in line with the genetic defect. Using Pt-195m radioactivity analysis, we demonstrated the limited capability of cisplatin crosslink repair in VU-SCC-1131. Unexpectedly, we were not able to translate these findings to a mouse model for sensitivity prediction based on the biodistribution in the tumor, most likely as other factors such as influx counterbalanced repair. These data do not support response prediction by [195mPt]cisplatin, and applications to predict the toxic side-effects of cisplatin and to tailor dosing schemes seem more feasible.

7.
Mol Imaging ; 11(1): 33-46, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22418026

RESUMEN

Given that overexpression of the epidermal growth factor receptor (EGFR) is found in many types of human epithelial cancers, noninvasive molecular imaging of this receptor is of great interest. A number of studies have employed monoclonal antibodies as probes; however, their characteristic long half-life in the bloodstream has encouraged the development of smaller probes. In this study, an anti-EGFR nanobody-based probe was developed and tested in comparison with cetuximab for application in optical molecular imaging. To this aim, the anti-EGFR nanobody 7D12 and cetuximab were conjugated to the near-infrared fluorophore IRDye800CW. 7D12-IR allowed the visualization of tumors as early as 30 minutes postinjection, whereas with cetuximab-IR, no signal above background was observed at the tumor site. Quantification of the IR-conjugated proteins in the tumors revealed ≈ 17% of injected dose per gram 2 hours after injection of 7D12-IR, which was significantly higher than the tumor uptake obtained 24 hours after injection of cetuximab-IR. This difference is associated with the superior penetration and distribution of 7D12-IR within the tumor. These results demonstrate that this anti-EGFR nanobody conjugated to the NIR fluorophore has excellent properties for rapid preclinical optical imaging, which holds promise for its future use as a complementary diagnostic tool in humans.


Asunto(s)
Receptores ErbB/metabolismo , Neoplasias/metabolismo , Espectroscopía Infrarroja Corta/métodos , Animales , Receptores ErbB/inmunología , Femenino , Humanos , Inmunohistoquímica , Ratones , Ratones Desnudos , Células 3T3 NIH , Neoplasias/inmunología
8.
Bioconjug Chem ; 22(10): 2072-81, 2011 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-21854058

RESUMEN

The application of intact monoclonal antibodies (mAbs) as targeting agents in nuclear imaging and radioimmunotherapy is hampered by the slow pharmacokinetics of these molecules. Pretargeting with mAbs could be beneficial to reduce the radiation burden to the patient, while using the excellent targeting capacity of the mAbs. In this study, we evaluated the applicability of the Staudinger ligation as pretargeting strategy using an antibody-azide conjugate as tumor-targeting molecule in combination with a small phosphine-containing imaging/therapeutic probe. Up to 8 triazide molecules were attached to the antibody without seriously affecting its immunoreactivity, pharmacokinetics, and tumor uptake in tumor bearing nude mice. In addition, two (89)Zr- and (67/68)Ga-labeled desferrioxamine (DFO)-phosphines, a (177)Lu-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-phosphine and a (123)I-cubyl phosphine probe were synthesized and characterized for their pharmacokinetic behavior in nude mice. With respect to the phosphine probes, blood levels at 30 min after injection were <5% injected dose per gram tissue, indicating rapid blood clearance. In vitro Staudinger ligation of 3.33 µM antibody-azide conjugate with 1 equiv of radiolabeled phosphine, relative to the azide, in aqueous solution resulted in 20-25% efficiency after 2 h. The presence of 37% human serum resulted in a reduced ligation efficiency (reduction max. 30% at 2 h), while the phosphines were still >80% intact. No in vivo Staudinger ligation was observed in a mouse model after injection of 500 µg antibody-azide, followed by 68 µg DFO-phosphine at t = 2 h, and evaluation in blood at t = 7 h. To explain negative results in mice, Staudinger ligation was performed in vitro in mouse serum. Under these conditions, a side product with the phosphine was formed and ligation efficiency was severely reduced. It is concluded that in vivo application of the Staudinger ligation in a pretargeting approach in mice is not feasible, since this ligation reaction is not bioorthogonal and efficient enough. Slow reaction kinetics will also severely restrict the applicability of Staudinger ligation in humans.


Asunto(s)
Anticuerpos Monoclonales/química , Azidas/química , Carcinoma de Células Escamosas/diagnóstico , Neoplasias de Cabeza y Cuello/diagnóstico , Inmunoconjugados/química , Fosfinas/química , Radiofármacos/química , Animales , Anticuerpos Monoclonales/sangre , Anticuerpos Monoclonales/farmacocinética , Azidas/sangre , Azidas/farmacocinética , Línea Celular Tumoral , Cabras , Humanos , Inmunoconjugados/sangre , Inmunoconjugados/farmacocinética , Ratones , Fosfinas/sangre , Fosfinas/farmacocinética , Conejos , Radiofármacos/sangre , Radiofármacos/farmacocinética , Carcinoma de Células Escamosas de Cabeza y Cuello , Porcinos
9.
Eur J Nucl Med Mol Imaging ; 38(4): 753-63, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21210114

RESUMEN

PURPOSE: The ∼15 kDa variable domains of camelid heavy-chain-only antibodies (called Nanobodies®) have the flexibility to be formatted as monovalent, monospecific, multivalent or multispecific single chain proteins with either fast or slow pharmacokinetics. We report the evaluation of the fast kinetic anti-epidermal growth factor receptor (EGFR) Nanobody 7D12, labelled with (68)Ga via the novel bifunctional chelate (BFC) p-isothiocyanatobenzyl-desferrioxamine (Df-Bz-NCS). Df-Bz-NCS has recently been introduced as the chelate of choice for (89)Zr immuno-positron emission tomography (PET). METHODS: Nanobody 7D12 was premodified with Df-Bz-NCS at pH 9. Radiolabelling with purified (68)Ga was performed at pH 5.0-6.5 for 5 min at room temperature. For in vitro stability measurements in storage buffer (0.25 M NaOAc with 5 mg ml(-1) gentisic acid, pH 5.5) at 4°C or in human serum at 37°C, a mixture of (67)Ga and (68)Ga was used. Biodistribution and immuno-PET studies of (68)Ga-Df-Bz-NCS-7D12 were performed in nude mice bearing A431 xenografts using (89)Zr-Df-Bz-NCS-7D12 as the reference conjugate. RESULTS: The Df-Bz-NCS chelate was conjugated to Nanobody 7D12 with a chelate to Nanobody molar substitution ratio of 0.2:1. The overall (68)Ga radiochemical yield was 55-70% (not corrected for decay); specific activity was 100-500 MBq/mg. Radiochemical purity of the conjugate was >96%, while the integrity and immunoreactivity were preserved. (68/67)Ga-Df-Bz-NCS-7D12 was stable in storage buffer as well as in human serum during a 5-h incubation period (<2% radioactivity loss). In biodistribution studies the (68)Ga-labelled Nanobody 7D12 showed high uptake in A431 tumours (ranging from 6.1 ± 1.3 to 7.2 ± 1.5%ID/g at 1-3 h after injection) and high tumour to blood ratios, which increased from 8.2 to 14.4 and 25.7 at 1, 2 and 3 h after injection, respectively. High uptake was also observed in the kidneys. Biodistribution was similar to that of the reference conjugate (89)Zr-Df-Bz-NCS-7D12. Tumours were clearly visualized in a PET imaging study. CONCLUSION: Via a rapid procedure under mild conditions a (68)Ga-Nanobody was obtained that exhibited high tumour uptake and tumour to normal tissue ratios in nude mice bearing A431 xenografts. Fast kinetic (68)Ga-Nanobody conjugates can be promising tools for tumour detection and imaging of target expression.


Asunto(s)
Anticuerpos/química , Deferoxamina/análogos & derivados , Receptores ErbB/inmunología , Isotiocianatos/química , Marcaje Isotópico/métodos , Tomografía de Emisión de Positrones/métodos , Radioinmunodetección/métodos , Animales , Anticuerpos/sangre , Anticuerpos/inmunología , Tampones (Química) , Línea Celular Tumoral , Quelantes/química , Reactivos de Enlaces Cruzados/química , Deferoxamina/química , Estabilidad de Medicamentos , Radioisótopos de Galio , Humanos , Ratones , Temperatura
10.
Eur J Nucl Med Mol Imaging ; 36(8): 1235-44, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19259661

RESUMEN

PURPOSE: The human monoclonal antibody (MAb) fragment L19-SIP is directed against extra domain B (ED-B) of fibronectin, a marker of tumour angiogenesis. A clinical radioimmunotherapy (RIT) trial with (131)I-L19-SIP was recently started. In the present study, after GMP production of (124)I and efficient production of (124)I-L19-SIP, we aimed to demonstrate the suitability of (124)I-L19-SIP immuno-PET for imaging of angiogenesis at early-stage tumour development and as a scouting procedure prior to clinical (131)I-L19-SIP RIT. METHODS: (124)I was produced in a GMP compliant way via (124)Te(p,n)(124)I reaction and using a TERIMO module for radioiodine separation. L19-SIP was radioiodinated by using a modified version of the IODO-GEN method. The biodistribution of coinjected (124)I- and (131)I-L19-SIP was compared in FaDu xenograft-bearing nude mice, while (124)I PET images were obtained from mice with tumours of <50 to approximately 700 mm(3). RESULTS: (124)I was produced highly pure with an average yield of 15.4 +/- 0.5 MBq/microAh, while separation yield was approximately 90% efficient with <0.5% loss of TeO(2). Overall labelling efficiency, radiochemical purity and immunoreactive fraction were for (124)I-L19-SIP: approximately 80 , 99.9 and >90%, respectively. Tumour uptake was 7.3 +/- 2.1, 10.8 +/- 1.5, 7.8 +/- 1.4, 5.3 +/- 0.6 and 3.1 +/- 0.4%ID/g at 3, 6, 24, 48 and 72 h p.i., resulting in increased tumour to blood ratios ranging from 6.0 at 24 h to 45.9 at 72 h p.i.. Fully concordant labelling and biodistribution results were obtained with (124)I- and (131)I-L19-SIP. Immuno-PET with (124)I-L19-SIP using a high-resolution research tomograph PET scanner revealed clear delineation of the tumours as small as 50 mm(3) and no adverse uptake in other organs. CONCLUSIONS: (124)I-MAb conjugates for clinical immuno-PET can be efficiently produced. Immuno-PET with (124)I-L19-SIP appeared qualified for sensitive imaging of tumour neovasculature and for predicting (131)I-L19-SIP biodistribution.


Asunto(s)
Anticuerpos/uso terapéutico , Radioisótopos de Yodo , Neoplasias/irrigación sanguínea , Neoplasias/radioterapia , Neovascularización Patológica/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Radioinmunoterapia/métodos , Proteínas Recombinantes de Fusión/uso terapéutico , Animales , Anticuerpos/administración & dosificación , Anticuerpos/química , Línea Celular Tumoral , Estudios de Factibilidad , Humanos , Inyecciones , Radioisótopos de Yodo/farmacocinética , Marcaje Isotópico , Ratones , Estadificación de Neoplasias , Neoplasias/diagnóstico por imagen , Neoplasias/inmunología , Neovascularización Patológica/inmunología , Planificación de la Radioterapia Asistida por Computador , Proteínas Recombinantes de Fusión/administración & dosificación , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/farmacocinética , Distribución Tisular , Trasplante Heterólogo , Urea/análogos & derivados , Urea/química
11.
Mol Cancer Ther ; 7(8): 2288-97, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18723476

RESUMEN

The approximately 15-kDa variable domains of camelid heavy-chain-only antibodies (called Nanobodies) can easily be formatted as multivalent or multispecific single-chain proteins. Because of fast excretion, however, they are less suitable for therapy of cancer. In this study, we aimed for improved tumor targeting of a bivalent anti-epidermal growth factor receptor (EGFR) Nanobody (alphaEGFR-alphaEGFR) by fusion to a Nanobody unit binding to albumin (alphaAlb). Biodistributions of alphaEGFR-alphaEGFR, alphaEGFR-alphaEGFR-alphaAlb ( approximately 50 kDa), alphaTNF-alphaTNF-alphaAlb (control, binding tumor necrosis factor-alpha), and the approximately 150-kDa anti-EGFR antibody cetuximab were compared in A431 xenograft-bearing mice. The proteins were radiolabeled with (177)Lu to facilitate quantification. Tumor uptake of (177)Lu-alphaEGFR-alphaEGFR decreased from 5.0 +/- 1.4 to 1.1 +/- 0.1 %ID/g between 6 and 72 h after injection. Due to its rapid blood clearance, tumor-to-blood ratios >80 were obtained within 6 h after injection. Blood clearance became dramatically slower and tumor uptake became significantly higher by introduction of alphaAlb. Blood levels of alphaEGFR-alphaEGFR-alphaAlb were 21.2 +/- 2.5, 11.9 +/- 0.6, and 4.0 +/- 1.4 and tumor levels were 19.4 +/- 5.5, 35.2 +/- 7.5, and 28.0 +/- 6.8 %ID/g at 6, 24, and 72 h after injection, respectively. Tumor uptake was at least as high as for cetuximab (15.5 +/- 3.9, 27.1 +/- 7.9, and 25.6 +/- 6.1 %ID/g) and significantly higher than for alphaTNF-alphaTNF-alphaAlb. alphaEGFR-alphaEGFR-alphaAlb showed faster and deeper tumor penetration than cetuximab. These data show that simple fusion of alphaEGFR and alphaAlb building blocks results in a bifunctional Nanobody format, which seems more favorable for therapy as far as pharmacokinetics and tumor deposition are concerned.


Asunto(s)
Albúminas/metabolismo , Anticuerpos/inmunología , Receptores ErbB/inmunología , Nanotecnología , Anticuerpos Monoclonales/farmacocinética , Anticuerpos Monoclonales Humanizados , Cetuximab , Receptores ErbB/metabolismo , Unión Proteica , Distribución Tisular
12.
Mol Cancer Res ; 17(1): 120-130, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30224542

RESUMEN

Head and neck squamous cell carcinomas (HNSCC) develop in fields of genetically altered cells. These fields are often dysplastic and a subset can be recognized as (erythro)leukoplakia, but most are macroscopically invisible. There is a lack of adequate treatment options to eradicate these fields, whereas they underlie the development of primary tumors as well as part of the local relapses. Unfortunately, there are almost no representative cellular models available to identify suitable treatment options. To this end, clinical biopsy specimens (n = 98) were cultured from normal appearing mucosa of the surgical margins of patients with primary HNSCCs (n = 32) to generate precancer cell culture models. This collection was extended with six previously established precancer cell cultures. Genetic analysis was performed on cultures with an extended life span (≥20 population doublings), the previously established cultures, and some randomly selected cultures. In total, cancer-associated changes were detected in 18 out of 34 (53%) cultures analyzed, which appeared to be independent of life span. A variety of genetic changes were identified, including somatic mutations as well as chromosomal copy-number aberrations (CNA). Loss of CDKN2A/p16Ink4A and mutations in TP53/p53 were most prominent. Remarkably, in some of these precancer cell cultures only chromosomal CNAs were detected, and none of the frequently occurring driver mutations. IMPLICATIONS: The precancer cell cultures, characterized herein, form a representative collection of field models that can be exploited to identify and validate new therapeutic strategies to prevent primary HNSCCs and local relapses.


Asunto(s)
Neoplasias de Cabeza y Cuello/genética , Membrana Mucosa/metabolismo , Lesiones Precancerosas/genética , Animales , Neoplasias de Cabeza y Cuello/patología , Humanos , Ratones , Lesiones Precancerosas/patología
13.
Oncogenesis ; 8(7): 38, 2019 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-31209198

RESUMEN

Head and neck squamous cell carcinomas (HNSCCs) coincide with poor survival rates. The lack of driver oncogenes complicates the development of targeted treatments for HNSCC. Here, we follow-up on two previous genome-wide RNA and microRNA interference screens in HNSCC to cross-examine tumor-specific lethality by targeting ATM, ATR, CHEK1, or CHEK2. Our results uncover CHEK1 as the most promising target for HNSCC. CHEK1 expression is essential across a panel of HNSCC cell lines but redundant for growth and survival of untransformed oral keratinocytes and fibroblasts. LY2603618 (Rabusertib), which specifically targets Chk1 kinase, kills HNSCC cells effectively and specifically. Our findings show that HNSCC cells depend on Chk1-mediated signaling to progress through S-phase successfully. Chk1 inhibition coincides with stalled DNA replication, replication fork collapses, and accumulation of DNA damage. We further show that Chk1 inhibition leads to bimodal HNSCC cell killing. In the most sensitive cell lines, apoptosis is induced in S-phase, whereas more resistant cell lines manage to bypass replication-associated apoptosis, but accumulate chromosomal breaks that become lethal in subsequent mitosis. Interestingly, CDK1 expression correlates with treatment outcome. Moreover, sensitivity to Chk1 inhibition requires functional CDK1 and CDK4/6 to drive cell cycle progression, arguing against combining Chk1 inhibitors with CDK inhibitors. In contrast, Wee1 inhibitor Adavosertib progresses the cell cycle and thereby increases lethality to Chk1 inhibition in HNSCC cell lines. We conclude that Chk1 has become a key molecule in HNSCC cell cycle regulation and a very promising therapeutic target. Chk1 inhibition leads to S-phase apoptosis or death in mitosis. We provide a potential efficacy biomarker and combination therapy to follow-up in clinical setting.

14.
Oncotarget ; 8(58): 97928-97940, 2017 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-29228663

RESUMEN

Head and neck squamous cell carcinomas (HNSCC) and local relapses thereof develop in preneoplastic fields in the mucosal linings of the upper aerodigestive tract. These fields are characterized by tumor-associated genetic changes, are frequently dysplastic and occasionally macroscopically visible. Currently, no adequate treatment options exist to prevent tumor development. Array-based screening with a panel of tumor-lethal small interfering RNAs (siRNAs) identified Polo-like kinase 1 (PLK1) as essential for survival of preneoplastic cells. Inhibition of PLK1 caused cell death of preneoplastic and HNSCC cells, while primary cells were hardly affected. Both siRNAs and small molecule inhibitors caused a strong G2/M cell cycle arrest accompanied by formation of monopolar spindles. In a xenografted mouse model PLK1 caused a significant tumor growth delay and cures, while chemoradiation had no effect. Thus, PLK1 seems to be a promising target for chemopreventive treatment of preneoplastic cells, and could be applied to prevent HNSCC and local relapses.

15.
J Nucl Med ; 47(7): 1127-35, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16818947

RESUMEN

UNLABELLED: The extra domain B of fibronectin (ED-B) is a marker of tumor angiogenesis. The human monoclonal antibody (mAb) L19-SIP (approximately 80 kDa; SIP is "small immunoprotein") has been selected for targeting of ED-B. The aim of this study was to evaluate the potential of radioimmunotherapy (RIT) with L19-SIP, either alone or in combination with cetuximab, for treatment of head and neck squamous cell carcinoma (HNSCC). Combination with cetuximab was considered because this anti-EGFR (epidermal growth factor receptor) mAb has proven value for the treatment of HNSCC. METHODS: HNSCC xenograft lines FaDu and HNX-OE were evaluated for ED-B and EGFR expression. L19-SIP was radiolabeled with 2 candidate radionuclides for RIT, 177Lu and 131I (or 125I as substitute). The biodistribution of coinjected 177Lu-L19-SIP and 125I-L19-SIP was assessed in FaDu-bearing nude mice, whereas 131I-L19-SIP was evaluated in both xenograft lines. After labeling with high-dose 131I (623-789 MBq/mg), the maximum tolerated dose (MTD) was assessed. The efficacy of RIT with injected 131I-L19-SIP, either alone or in combination with unlabeled cetuximab (1 mg 2 times a week intraperitoneally for 4 wk), was evaluated in both xenograft lines. RESULTS: Xenograft lines expressed both antigens, with similar EGFR expression and the highest ED-B expression in FaDu. Radioiodinated L19-SIP performed better than 177Lu-L19-SIP and was further exploited. The biodistribution of 131I-L19-SIP was most favorable in FaDu-bearing mice, with tumor uptake values at 24, 48, and 72 h after injection of 8.6 +/- 1.6, 5.8 +/- 0.4, and 3.4 +/- 0.2 %ID/g (%ID/g is percentage injected dose per gram of tissue), respectively, and ratios of tumor to normal tissues that gradually increased in time, such as for blood from 4.4 +/- 1.8 at 24 h to 21.4 +/- 1.7 at 72 h, after injection. RIT at the MTD level of 74 MBq caused significant tumor growth delay and improved survival in both lines. Although FaDu was most sensitive for RIT, with size reduction of all tumors, HNX-OE was most sensitive for treatment with cetuximab. The best survival and cure rates were obtained, however, when RIT and cetuximab were combined. CONCLUSION: RIT with 131I-L19-SIP appeared efficacious in HNSCC xenografts. The efficacy of RIT was enhanced by combination with cetuximab, without increase of toxicity.


Asunto(s)
Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/terapia , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/terapia , Radioisótopos de Yodo/uso terapéutico , Neoplasias/patología , Neovascularización Patológica , Radioinmunoterapia/métodos , Animales , Anticuerpos Monoclonales/química , Línea Celular Tumoral , Humanos , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Neoplasias/irrigación sanguínea , Estructura Terciaria de Proteína
16.
J Nucl Med ; 46(11): 1898-906, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16269605

RESUMEN

UNLABELLED: Immuno-PET as a scouting procedure before radioimmunotherapy (RIT) aims at confirming tumor targeting and accurately estimating radiation dose delivery to both tumor and normal tissues and might therefore be of value for selection of patient candidates for RIT. A prerequisite for this approach is that PET radioimmunoconjugates and RIT radioimmunoconjugates must show a similar biodistribution. In the present study, we evaluated the potential of the long-lived positron emitter (89)Zr to predict biodistribution of the residualizing therapeutic radiometals (88)Y (as a substitute for (90)Y) and (177)Lu when labeled to the monoclonal antibody (mAb) cetuximab via different types of chelates. Cetuximab was selected as a model mAb because it abundantly internalizes after binding to the epidermal growth factor receptor. METHODS: Cetuximab was labeled with (89)Zr using succinylated desferrioxamine B (N-sucDf). The chelates p-benzyl isothiocyanate-1,4,7,10-tetraazacyclododecane-1,4,7, 10-tetraacetic acid (p-SCN-Bz-DOTA) and p-isothiocyanatobenzyl diethylenetriaminepentaacetic acid (p-SCN-Bz-DTPA) were both used for radiolabeling with (88)Y and (177)Lu. For measurement of the in vitro stability of each of the 5 radioimmunoconjugates, samples were incubated in freshly prepared human serum at 37 degrees C up to 16 d. Biodistribution was assessed at 24, 48, 72, and 144 h after intraperitoneal coinjection of the PET and RIT conjugates in nude mice bearing the squamous cell carcinoma xenograft line A431. RESULTS: Cetuximab premodification with N-sucDf, p-SCN-Bz-DOTA, or p-SCN-Bz-DTPA resulted in chelate-to-mAb molar ratios of about 1. After radiolabeling and purification, the radiochemical purity and immunoreactive fraction of the conjugates always exceeded 97% and 93%, respectively. All conjugates were stable in serum, showing a radioactivity release of less than 5% until day 7. From day 7 until day 16, an enhanced release was observed for the (89)Zr-N-sucDf, (88)Y-p-SCN-Bz-DTPA, and (177)Lu-p-SCN-Bz-DTPA conjugates. The coinjected PET and RIT conjugates showed similar biodistributions, except for the thighbone and sternum. For example, the (89)Zr-N-sucDf conjugate showed a 2.0-2.5 times higher radioactivity accretion in the thighbone than did the RIT conjugates at 72 h after injection. CONCLUSION: In view of the advantages of PET over SPECT, (89)Zr-immuno-PET is a promising modality for in vivo scouting of (90)Y- and (177)Lu-labeled mAbs, although care should be taken when estimating bone marrow doses.


Asunto(s)
Carcinoma de Células Escamosas/diagnóstico por imagen , Carcinoma de Células Escamosas/metabolismo , Lutecio/farmacocinética , Tomografía de Emisión de Positrones/métodos , Radioisótopos de Itrio/farmacocinética , Circonio/farmacocinética , Animales , Carcinoma de Células Escamosas/radioterapia , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos/métodos , Femenino , Humanos , Lutecio/uso terapéutico , Tasa de Depuración Metabólica , Ratones , Ratones Desnudos , Especificidad de Órganos , Radioisótopos/farmacocinética , Radiofármacos/farmacocinética , Radiofármacos/uso terapéutico , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Distribución Tisular , Radioisótopos de Itrio/uso terapéutico
17.
EJNMMI Res ; 5: 14, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25853020

RESUMEN

BACKGROUND: Tyrosine kinase inhibitors (TKIs) have experienced a tremendous boost in the last decade, where more than 15 small molecule TKIs have been approved by the FDA. Unfortunately, despite their promising clinical successes, a large portion of patients remain unresponsive to these targeted drugs. For non-small cell lung cancer (NSCLC), the effectiveness of TKIs is dependent on the mutational status of epidermal growth factor receptor (EGFR). The exon 19 deletion as well as the L858R point mutation lead to excellent sensitivity to TKIs such as erlotinib and gefitinib; however, despite initial good response, most patients invariably develop resistance against these first-generation reversible TKIs, e.g., via T790M point mutation. Second-generation TKIs that irreversibly bind to EGFR wild-type and mutant isoforms have therefore been developed and one of these candidates, afatinib, has now reached the market. Whether irreversible TKIs differ from reversible TKIs in their in vivo tumor-targeting properties is, however, not known and is the subject of the present study. METHODS: Erlotinib was labeled with carbon-11 and afatinib with fluorine-18 without modifying the structure of these compounds. A preclinical positron emission tomography (PET) study was performed in mice bearing NSCLC xenografts with a representative panel of mutations: an EGFR-WT xenograft cell line (A549), an acquired treatment-resistant L858R/T790M mutant (H1975), and a treatment-sensitive exon 19 deleted mutant (HCC827). PET imaging was performed in these xenografts with both tracers. Additionally, the effect of drug efflux transporter permeability glycoprotein (P-gp) on the tumor uptake of tracers was explored by therapeutic blocking with tariquidar. RESULTS: Both tracers only demonstrated selective tumor uptake in the HCC827 xenograft line (tumor-to-background ratio, [(11)C]erlotinib 1.9 ± 0.5 and [(18)F]afatinib 2.3 ± 0.4), thereby showing the ability to distinguish sensitizing mutations in vivo. No major differences were observed in the kinetics of the reversible and the irreversible tracers in each of the xenograft models. Under P-gp blocking conditions, no significant changes in tumor-to-background ratio were observed; however, [(18)F]afatinib demonstrated better tumor retention in all xenograft models. CONCLUSIONS: TKI-PET provides a method to image sensitizing mutations and can be a valuable tool to compare the distinguished targeting properties of TKIs in vivo.

18.
Mol Cancer Ther ; 14(6): 1434-44, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25808837

RESUMEN

Lung cancer is the most common cancer worldwide and on top of that has a very poor prognosis, which is reflected by a 5-year survival rate of 5% to 15%. Radiotherapy is an integral part of most treatment regimens for this type of tumor, often combined with radiosensitizing cytotoxic drugs. In this study, we identified many genes that could potentially be exploited for targeted radiosensitization using a genome-wide siRNA screen in non-small cell lung cancer (NSCLC) cells. The screen identified 433 siRNAs that potentially sensitize lung cancer cells to radiation. Validation experiments showed that knockdown of expression of Forkhead box M1 (FOXM1) or microtubule-associated serine/threonine kinase-like (MASTL) indeed causes radiosensitization in a panel of NSCLC cells. Strikingly, this effect was not observed in primary human fibroblasts, suggesting that the observed radiosensitization is specific for cancer cells. Phosphoproteomics analyses with and without irradiation showed that a number of cell-cycle-related proteins were significantly less phosphorylated after MASTL knockdown in comparison to the control, while there were no changes in the levels of phosphorylation of DNA damage response proteins. Subsequent analyses showed that MASTL knockdown cells respond differently to radiation, with a significantly shortened G2-M phase arrest and defects in cytokinesis, which are followed by a cell-cycle arrest. In summary, we have identified many potential therapeutic targets that could be used for radiosensitization of NSCLC cells, with MASTL being a very promising and druggable target to combine with radiotherapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Factores de Transcripción Forkhead/genética , Genoma Humano/genética , Neoplasias Pulmonares/radioterapia , Proteínas Asociadas a Microtúbulos/genética , Proteínas Serina-Treonina Quinasas/genética , Interferencia de ARN , Animales , Western Blotting , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Ciclo Celular/genética , Ciclo Celular/efectos de la radiación , Línea Celular Tumoral , Regulación hacia Abajo/genética , Regulación hacia Abajo/efectos de la radiación , Proteína Forkhead Box M1 , Factores de Transcripción Forkhead/metabolismo , Rayos gamma , Regulación Neoplásica de la Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Células HEK293 , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones Desnudos , Microscopía Confocal , Proteínas Asociadas a Microtúbulos/metabolismo , Fosforilación/genética , Fosforilación/efectos de la radiación , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Interferente Pequeño/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Supervivencia , Ensayos Antitumor por Modelo de Xenoinjerto
19.
J Nucl Med ; 44(8): 1271-81, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12902418

RESUMEN

UNLABELLED: The use of immuno-PET, the combination of PET with monoclonal antibodies (mAbs), is an attractive option to improve tumor detection and mAb quantification. The long-lived positron emitter (89)Zr has ideal physical characteristics for immuno-PET, such as a half-life of 3.27 d, which is compatible with the time needed for intact mAbs to achieve optimal tumor-to-nontumor ratios. Thus far, a major limitation in the use of (89)Zr has been the lack of suitable methods for its stable coupling to mAbs. In this article, practical protocols for reproducible isolation of highly pure (89)Zr and the production of optimal-quality mAb-(89)Zr conjugates are provided. METHODS: (89)Zr was produced by a (p,n) reaction on natural yttrium ((89)Y), isolated with a hydroxamate column, and used for labeling of premodified mAbs. mAbs were premodified with a novel bifunctional derivative of the chelate desferrioxamine B (Df) via a new linker chemistry. To this end, Df was initially succinylated (N-sucDf), temporarily filled with Fe(III), esterified by use of tetrafluorophenol, and then directly coupled to mAbs. Chimeric mAb (cmAb) U36, directed against head and neck cancer, was used for in vitro and in vivo evaluation. The in vitro stability of cmAb U36-N-sucDf-(89)Zr was assessed in human serum, and its in vivo behavior was evaluated by biodistribution and PET imaging studies in tumor-bearing nude mice. A cmAb U36-Df-(89)Zr conjugate containing a previously described succinimide ring-thioether unit in the linker was used as a reference. RESULTS: (89)Zr was produced in large batches (6.5-13.5 GBq) and isolated with improved radionuclidic purity (>99.99%) and high yield (>94%). The Df-premodified mAbs gave (89)Zr-labeling efficiencies of 80% within 30 min, resulting in conjugates with preserved integrity and immunoreactivity. With respect to stability, the novel cmAb U36-N-sucDf-(89)Zr conjugate appeared to be superior to the reference conjugate. In vivo, the novel conjugate demonstrated selective tumor targeting, and on PET images obtained at 24, 48, and 72 h after injection of this conjugate, small tumors in the range of 19-154 mg were readily visualized. CONCLUSION: Methods were developed for improved purification of the long-lived positron emitter (89)Zr. Moreover, a novel bifunctional Df chelate was synthesized for the reproducible coupling of (89)Zr to mAbs. The suitability of such conjugates to detect millimeter-sized tumors in xenograft-bearing nude mice was demonstrated.


Asunto(s)
Anticuerpos Monoclonales , Marcaje Isotópico/métodos , Radioisótopos/química , Radioisótopos/farmacocinética , Circonio/química , Circonio/farmacocinética , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/farmacocinética , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Estabilidad de Medicamentos , Estudios de Factibilidad , Femenino , Humanos , Neoplasias Pulmonares , Ratones , Ratones Desnudos , Especificidad de Órganos , Radioinmunodetección/métodos , Radioisótopos/aislamiento & purificación , Radiofármacos/síntesis química , Radiofármacos/aislamiento & purificación , Radiofármacos/farmacocinética , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Distribución Tisular , Tomografía Computarizada de Emisión/métodos , Circonio/aislamiento & purificación
20.
Cancer Biother Radiopharm ; 18(4): 655-61, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-14503961

RESUMEN

Antibody-PET imaging might be of value for the selection of radioimmunotherapy (RIT) candidates to confirm tumor targeting and to estimate radiation doses to tumor and normal tissues. One of the requirements to be set for such a scouting procedure is that the biodistributions of the diagnostic and therapeutic radioimmunoconjugates should be similar. In the present study we evaluated the potential of the positron emitters zirconium-89 ((89)Zr) and iodine-124 ((124)I) for this approach, as these radionuclides have a relatively long half-life that matches with the kinetics of MAbs in vivo (t(1/2) 3.27 and 4.18 days, respectively). After radiolabeling of the head and neck squamous cell carcinoma (HNSCC)-selective chimeric antibody (cMAb) U36, the biodistribution of two diagnostic (cMAb U36-N-sucDf-(89)Zr and cMAb U36-(124)I) and three therapeutic radioimmunoconjugates (cMAb U36-p-SCN-Bz-DOTA-(88)Y-with (88)Y being substitute for (90)Y, cMAb U36-(131)I, and cMAb U36-MAG3-(186)Re) was assessed in mice with HNSCC-xenografts, at 24, 48, and 72 hours after injection. Two patterns of biodistribution were observed, one pattern matching for (89)Zr- and (88)Y-labeled cMAb U36 and one pattern matching for (124)I-, (131)I-, and (186)Re-cMAb U36. The most remarkable differences between both patterns were observed for uptake in tumor and liver. Tumor uptake levels were 23.2 +/- 0.5 and 24.1 +/- 0.7%ID/g for the (89)Zr- and (88)Y-cMAb U36 and 16.0 +/- 0.8, 15.7 +/- 0.79 and 17.1 +/- 1.6%ID/g for (124)I-, (131)I-, and (186)Re-cMAb U36-conjugates, respectively, at 72 hours after injection. For liver these values were 6.9 +/- 0.8 ((89)Zr), 6.2 +/- 0.8 ((88)Y), 1.7 +/- 0.1 ((124)I), 1.6 +/- 0.1 ((131)I), and 2.3 +/- 0.1 ((186)Re), respectively. These preliminary data justify the further development of antibody-PET with (89)Zr-labeled MAbs for scouting of therapeutic doses of (90)Y-labeled MAbs. In such approach (124)I-labeled MAbs are most suitable for scouting of (131)I- and (186)Re-labeled MAbs.


Asunto(s)
Inmunoconjugados/farmacocinética , Radioisótopos de Yodo , Radioisótopos , Circonio , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacocinética , Carcinoma de Células Escamosas/diagnóstico por imagen , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/radioterapia , Línea Celular Tumoral , Femenino , Glicoproteínas/inmunología , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/radioterapia , Humanos , Receptores de Hialuranos/inmunología , Inmunoconjugados/química , Marcaje Isotópico , Ratones , Ratones Desnudos , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/farmacocinética , Renio , Factores de Tiempo , Distribución Tisular , Tomografía Computarizada de Emisión , Ensayos Antitumor por Modelo de Xenoinjerto , Radioisótopos de Itrio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA