RESUMEN
BACKGROUND: Pritelivir, an inhibitor of the viral helicase-primase complex, exhibits antiviral activity in vitro and in animal models of herpes simplex virus (HSV) infection. We tested the efficacy and safety of pritelivir in otherwise healthy persons with genital HSV-2 infection. METHODS: We randomly assigned 156 HSV-2-positive persons with a history of genital herpes to receive one of four doses of oral pritelivir (5, 25, or 75 mg daily, or 400 mg weekly) or placebo for 28 days. Participants obtained daily swabs from the genital area for HSV-2 testing, which was performed with a polymerase-chain-reaction assay. Participants also maintained a diary of genital signs and symptoms. The primary end point was the rate of genital HSV shedding. RESULTS: HSV shedding among placebo recipients was detected on 16.6% of days; shedding among pritelivir recipients was detected on 18.2% of days among those receiving 5 mg daily, 9.3% of days among those receiving 25 mg daily, 2.1% of days among those receiving 75 mg daily, and 5.3% of days among those receiving 400 mg weekly. The relative risk of viral shedding with pritelivir, as compared with placebo, was 1.11 (95% confidence interval [CI], 0.65 to 1.87) with the 5-mg daily dose, 0.57 (95% CI, 0.31 to 1.03) with the 25-mg daily dose, 0.13 (95% CI, 0.04 to 0.38) with the 75-mg daily dose, and 0.32 (95% CI, 0.17 to 0.59) with the 400-mg weekly dose. The percentage of days with genital lesions was also significantly reduced, from 9.0% in the placebo group to 1.2% in both the group receiving 75 mg of pritelivir daily (relative risk, 0.13; 95% CI, 0.02 to 0.70) and the group receiving 400 mg weekly (relative risk, 0.13; 95% CI, 0.03 to 0.52). The rate of adverse events was similar in all groups. CONCLUSIONS: Pritelivir reduced the rates of genital HSV shedding and days with lesions in a dose-dependent manner in otherwise healthy men and women with genital herpes. (Funded by AiCuris; ClinicalTrials.gov number, NCT01047540.).
Asunto(s)
Antivirales/administración & dosificación , Herpes Genital/tratamiento farmacológico , Herpesvirus Humano 2 , Piridinas/administración & dosificación , Tiazoles/administración & dosificación , Esparcimiento de Virus/efectos de los fármacos , Administración Oral , Adulto , Anciano , Antivirales/efectos adversos , Antivirales/farmacología , ADN Viral/análisis , Relación Dosis-Respuesta a Droga , Esquema de Medicación , Farmacorresistencia Viral , Femenino , Herpes Genital/virología , Herpesvirus Humano 2/genética , Herpesvirus Humano 2/aislamiento & purificación , Humanos , Masculino , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa , Piridinas/efectos adversos , Piridinas/farmacología , Sulfonamidas , Tiazoles/efectos adversos , Tiazoles/farmacología , Carga Viral/efectos de los fármacosRESUMEN
AIMS: Human cytomegalovirus constitutes a prevalent and serious threat to immunocompromised individuals and requires new treatments. Letermovir is a novel viral-terminase inhibitor that has demonstrated prophylactic/pre-emptive activity against human cytomegalovirus in Phase 2 and 3 transplant trials. As unchanged letermovir is primarily excreted via the liver by bile, this trial aimed to assess the effect of hepatic impairment on letermovir pharmacokinetics. METHODS: Phase 1, open-label, parallel-group pharmacokinetic and safety comparison of multiple once-daily oral letermovir in female subjects with hepatic impairment and healthy matched controls. For 8 days, subjects with moderate hepatic impairment (n = 8) and their matched healthy controls (n = 9) received 60 mg letermovir/day and those with severe hepatic impairment (n = 8) and their matched healthy controls (n = 8) received 30 mg letermovir/day. Pharmacokinetic parameters were determined from blood samples. RESULTS: For subjects with moderate hepatic impairment, maximal observed concentration at steady state (Css,max ) and the area under the concentration vs. time curve over a dosing interval at steady state (AUCτ,ss ) for total letermovir were 1.37-fold (90% confidence interval: 0.87, 2.17) and 1.59-fold (0.98, 2.57) higher, respectively, than in healthy subjects. For subjects with severe hepatic impairment, Css,max and AUCτ,ss values of total letermovir were 2.34-fold (1.91, 2.88) and 3.82-fold (2.94, 4.97) higher, respectively, compared with healthy subjects. CONCLUSIONS: Moderate hepatic impairment increased exposure to letermovir <2-fold, while severe hepatic impairment increased letermovir exposure approximately 4-fold as compared with healthy subjects. Letermovir 60/30 mg/day was generally well-tolerated in subjects with hepatic impairment.
Asunto(s)
Acetatos/farmacocinética , Antivirales/farmacocinética , Infecciones por Citomegalovirus/tratamiento farmacológico , Hepatopatías/metabolismo , Hígado/metabolismo , Quinazolinas/farmacocinética , Acetatos/administración & dosificación , Acetatos/efectos adversos , Acetatos/sangre , Administración Oral , Adolescente , Adulto , Anciano , Antivirales/administración & dosificación , Antivirales/efectos adversos , Antivirales/sangre , Área Bajo la Curva , Esquema de Medicación , Femenino , Semivida , Humanos , Hígado/fisiopatología , Hepatopatías/diagnóstico , Hepatopatías/fisiopatología , Tasa de Depuración Metabólica , Persona de Mediana Edad , Quinazolinas/administración & dosificación , Quinazolinas/efectos adversos , Quinazolinas/sangre , Federación de Rusia , Índice de Severidad de la Enfermedad , Resultado del Tratamiento , Adulto JovenRESUMEN
AIMS: Human cytomegalovirus remains a significant issue for immunocompromised patients and existing viral polymerase targeting therapies are associated with significant toxicity. Accordingly, the viral terminase complex inhibitor, letermovir, is in development. We assessed letermovir pharmacokinetics in renal impairment. METHODS: This was a Phase 1, open-label, nonrandomised trial. Estimated glomerular filtration rate based on the Modification of Diet Renal Disease equation was used to create three groups of eight subjects: healthy function (estimated glomerular filtration rate ≥ 90 ml min-1 1.73m-2 ), moderate (30-59 ml min-1 1.73m-2 ) and severe (<30 ml min-1 1.73m-2 ) impairment. Oral letermovir 120 mg was dosed once-daily for 8 days and blood collected for pharmacokinetic analyses. RESULTS: All 24 subjects enrolled completed the trial. Moderate and severe renal impairment increased mean unbound letermovir fractions by 11% and 26%, respectively, vs. healthy subjects. Exposure (AUCτ,ss and Css,max ) was increased with renal impairment [least square mean ratios (90% confidence intervals) total letermovir vs. healthy subjects, AUCτ,ss 192% (143-258%) and 142% (83-243%) for moderate and severe impairment, respectively; Css,max 125% (87-182%) and 106% (75-151%), respectively]. Clearance was decreased vs. healthy subjects. Correlation analyses indicated a correlation between decreasing renal function and increased unbound letermovir concentration (R2 = 0.5076, P < 0.0001). Correlations were identified between decreased clearance with both decreased renal function (R2 = 0.0662, P = 0.2249 and R2 = 0.1861, P = 0.0353 total and unbound clearance, respectively) and increased age (R2 = 0.3548, P = 0.0021 and R2 = 0.3166, P = 0.0042 total and unbound clearance, respectively). Multiple-dose letermovir 120 mg was well tolerated across groups. CONCLUSIONS: Renal impairment increased exposure to letermovir, although age was a confounding factor.
Asunto(s)
Acetatos/farmacocinética , Quinazolinas/farmacocinética , Insuficiencia Renal/sangre , Acetatos/efectos adversos , Acetatos/sangre , Anciano , Antivirales/efectos adversos , Antivirales/sangre , Antivirales/farmacocinética , Femenino , Tasa de Filtración Glomerular , Humanos , Masculino , Persona de Mediana Edad , Quinazolinas/efectos adversos , Quinazolinas/sangreRESUMEN
Importance: Current therapy of herpes infections relies on nucleoside analogues. Pritelivir is a well-tolerated novel herpes simplex virus (HSV) helicase-primase inhibitor that reduced genital shedding and lesions. Objective: To compare the efficacy of pritelivir with valacyclovir for suppression of genital HSV-2 infection. Design, Setting, and Participants: A phase 2, randomized, double-blind, crossover clinical trial at clinical research centers in 4 US cities (October 2012-July 2013) compared daily oral doses of 100 mg of pritelivir with 500 mg of valacyclovir. The planned sample size was 98 adults, allowing for detection of a 50% reduction in viral shedding between the study treatments. Healthy adults with 4 to 9 annual genital HSV-2 recurrences were eligible. 45 participants were randomized to receive pritelivir [corrected] and 46 to receive valacyclovir first when the US Food and Drug Administration placed the trial on clinical hold based on findings in a concurrent nonclinical toxicity study, and the sponsor terminated the study. Interventions: Participants took the first drug for 28 days followed by 28 days of washout before taking the second drug for 28 days. Throughout treatment, the participants collected genital swabs 4 times daily for testing by HSV polymerase chain reaction assays. Main Outcomes and Measures: The primary end point was within-participant genital HSV shedding while receiving pritelivir compared with valacyclovir. Secondary end points included the quantity of HSV in positive swabs and the frequency of genital lesions and shedding episodes. Results: Of the 91 randomized participants (median age, 48 years; 57 women [63%]), 56 had completed both treatment periods at the time of the study's termination. In intent-to-treat analyses, HSV shedding was detected in 2.4% (173 of 7276 ) of swabs during pritelivir treatment compared with 5.3% (392 of 7453) during valacyclovir treatment (relative risk [RR], 0.42 [corrected]; 95% CI, 0.21 to 0.82; P = .01). In swabs with HSV, the mean quantity of HSV was 3.2 log10 copies/mL during pritelivir treatment vs 3.7 log10 copies/mL during valacyclovir treatment (difference, -0.1; 95% CI, -0.6 to 0.5; P = .83). Genital lesions were present on 1.9% of days in the pritelivir group vs 3.9% in the valacyclovir group (RR, 0.40; 95% CI, 0.17-0.96; P = .04). The frequency of shedding episodes did not differ by group, with 1.3 per person-month for pritelivir and 1.6 per person-month for valacyclovir (RR, 0.80; 95% CI, 0.52 to 1.22; P = .29). Treatment-emergent adverse events occurred in 62.3% of participants in the pritelivir group and 69.2% of participants in the valacyclovir group. Conclusions and Relevance: Among adults with frequently recurring genital HSV-2, the use of pritelivir compared with valacyclovir resulted in a lower percentage of swabs with HSV detection over 28 days. Further research is needed to assess longer-term efficacy and safety. Trial Registration: clinicaltrials.gov Identifier: NCT01658826.
Asunto(s)
Aciclovir/análogos & derivados , Antivirales/uso terapéutico , Herpes Genital/tratamiento farmacológico , Piridinas/uso terapéutico , Tiazoles/uso terapéutico , Valina/análogos & derivados , Esparcimiento de Virus/efectos de los fármacos , Aciclovir/efectos adversos , Aciclovir/uso terapéutico , Adulto , Anciano , Antivirales/efectos adversos , Estudios Cruzados , Método Doble Ciego , Femenino , Herpes Genital/virología , Herpesvirus Humano 2 , Humanos , Masculino , Persona de Mediana Edad , Piridinas/efectos adversos , Recurrencia , Sulfonamidas , Tiazoles/efectos adversos , Valaciclovir , Valina/efectos adversos , Valina/uso terapéutico , Adulto JovenRESUMEN
Letermovir is a human cytomegalovirus (CMV) terminase inhibitor for the prophylaxis of CMV infection and disease in allogeneic hematopoietic stem-cell transplant recipients. In vitro studies have identified letermovir as a potential cytochrome P450 (CYP) 3A inhibitor. Thus, the effect of letermovir on the CYP3A isoenzyme-specific probe drug midazolam was investigated in a phase 1 trial. Healthy female subjects received single-dose intravenous (IV; 1 mg) and oral (2 mg) midazolam on days -4 and -2, respectively. Letermovir 240 mg once daily was administered on days 1 to 6, and further single doses of midazolam 1 mg IV and oral midazolam 2 mg were administered on days 4 and 6, respectively. Pharmacokinetics, tolerability, and safety were monitored throughout the trial. Following coadministration with letermovir, the least square means ratio for maximum plasma concentration and area under the plasma concentration-time curve from time 0 to the last measurable concentration was 172.4% and 225.3%, respectively, for oral midazolam, and 105.2% and 146.6%, respectively, for midazolam IV. The area under the plasma concentration-time curve from time 0 to the last measurable concentration ratio of midazolam to 1-hydroxymidazolam increased slightly in the presence of letermovir following IV (8.8-13.1; 49% increase) and oral (3.3-5.3; 59% increase) midazolam. Letermovir reached steady state, on average, by days 5 to 6. All treatments were generally well tolerated. Letermovir demonstrated moderate CYP3A inhibition.
Asunto(s)
Midazolam , Acetatos , Área Bajo la Curva , Interacciones Farmacológicas , Femenino , Voluntarios Sanos , Humanos , Midazolam/administración & dosificación , Midazolam/efectos adversos , Midazolam/farmacocinética , QuinazolinasRESUMEN
Letermovir is a human cytomegalovirus (CMV) terminase inhibitor approved in the United States, Canada, Japan, and the European Union for prophylaxis of CMV infection and disease in CMV-seropositive, allogeneic, hematopoietic stem-cell transplant recipients. In vitro, letermovir is a substrate and potential modulator of P-glycoprotein. The potential of letermovir to alter the pharmacokinetics of digoxin (a P-glycoprotein substrate) upon coadministration in healthy subjects was therefore investigated in a phase 1 trial (EudraCT: 2011-004516-39). Oral letermovir 240 mg was administered twice daily for 12 days with a single oral digoxin 0.5-mg dose on day 7; after a washout period, oral digoxin 0.5 mg was administered on day 35 (sequence 1). The period order was reversed after a 28-day washout for sequence 2. Pharmacokinetics and safety were evaluated. The presence of steady-state letermovir reduced digoxin area under the plasma concentration-time curve from administration until last quantifiable measurement by 12% and maximum plasma concentration by 22% compared with digoxin alone; digoxin half-life and elimination rate remained similar in both conditions. The between-subject variability of digoxin maximum plasma concentration was higher with letermovir than without (42% vs 31%) and similar for digoxin area under the plasma concentration-time curve in both periods. No specific safety or tolerability concerns were identified. Overall, letermovir had no clinically relevant effect on concomitant administration with digoxin.
Asunto(s)
Acetatos , Digoxina , Quinazolinas , Subfamilia B de Transportador de Casetes de Unión a ATP , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Acetatos/administración & dosificación , Acetatos/efectos adversos , Administración Oral , Ensayos Clínicos Fase I como Asunto , Digoxina/administración & dosificación , Digoxina/farmacocinética , Voluntarios Sanos , Humanos , Quinazolinas/administración & dosificación , Quinazolinas/efectos adversos , Estados UnidosRESUMEN
Letermovir is being developed for human cytomegalovirus infection treatment and prophylaxis. In patients receiving transplants, antivirals are coadministered with cyclosporine A (CsA) or tacrolimus (TAC) immunosuppressants. Therefore, we investigated the potential for letermovir-immunosuppressant interactions. In 2 phase 1 clinical trials either CsA 50 mg or TAC 5 mg was administered to healthy males. Following washout, letermovir 80 mg was dosed twice daily for 7 and 11 days in the CsA and TAC trials, respectively, with a second dose of immunosuppressant coadministered with letermovir at steady state. In addition, letermovir 40 mg twice daily was administered for 14 days, and either CsA 50 or 200 mg administered on days 7 and 14. Pharmacokinetics and tolerability were assessed. Letermovir increased CsA and TAC Cmax by 37% and 70%, respectively, and exposure by 70% and 78%, respectively, compared with immunosuppressant alone; t½ was also increased from 10.7 to 17.9 hours for CsA. CsA (50/200 mg) increased letermovir Cmax,ss (109%/167%) and AUCss,τ (126%/237%) and decreased t½ (4.33 to 3.68/3.04 hours) versus letermovir alone. TAC did not significantly affect letermovir pharmacokinetics. All treatments were well tolerated. Concomitant letermovir increased TAC and CsA exposure. CsA altered letermovir pharmacokinetics, whereas TAC did not.