Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
2.
Oncogene ; 38(30): 5905-5920, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31296956

RESUMEN

Deregulation of cyclin-dependent kinases 4 and 6 (CDK4/6) is highly prevalent in cancer; yet, inhibitors against these kinases are currently used only in restricted tumour contexts. The extent to which cancers depend on CDK4/6 and the mechanisms that may undermine such dependency are poorly understood. Here, we report that signalling engaging the MET proto-oncogene receptor tyrosine kinase/focal adhesion kinase (FAK) axis leads to CDK4/6-independent CDK2 activation, involving as critical mechanistic events loss of the CDKI p21CIP1 and gain of its regulator, the ubiquitin ligase subunit SKP2. Combined inhibition of MET/FAK and CDK4/6 eliminates the proliferation capacity of cancer cells in culture, and enhances tumour growth inhibition in vivo. Activation of the MET/FAK axis is known to arise through cancer extrinsic and intrinsic cues. Our work predicts that such cues support cell division independent of the activity of the cell cycle-regulating CDK4/6 kinases and identifies MET/FAK as a tractable route to broaden the utility of CDK4/6 inhibitor-based therapies in the clinic.


Asunto(s)
Ciclo Celular , División Celular , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 6 Dependiente de la Ciclina/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Células A549 , Animales , Biomarcadores de Tumor/metabolismo , Quinasa 2 Dependiente de la Ciclina/metabolismo , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Xenoinjertos , Humanos , Ratones , Proto-Oncogenes Mas
3.
Methods Mol Biol ; 1636: 133-161, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28730478

RESUMEN

High-content imaging connects the information-rich method of microscopy with the systematic objective principles of software-driven analysis. Suited to automation and, therefore, considerable scale-up of study size, this approach can deliver multiparametric data over cell populations or at the level of the individual cell and has found considerable utility in reverse genetic and pharmacological screens. Here we present a method to screen small interfering RNA (siRNA) libraries allowing subsequent observation of the impact of each knockdown on two interlinked, high-content, G1-/S-phase cell cycle transition assays related to cyclin-dependent kinase (CDK) 2 activity. We show how plasticity within the network governing the activity of this kinase can be detected by combining modifier siRNAs with a siRNA library. The method uses fluorescent immunostaining of a nuclear antigen, CyclinA, following cell fixation while also preserving the fluorescence of a stably expressed fluorescent protein-tagged reporter for CDK2 activity. We provide methodology for data extraction and handling including an R-script that converts the multidimensional data into four simple binary outcomes, on which a hit-mining strategy can be built. The workflow described can in principle be adopted to yield quantitative single-cell-resolved data and mining for outcomes relating to a broad range of other similar readouts and signaling contexts.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Imagen Molecular , Fosfotransferasas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/genética , Técnica del Anticuerpo Fluorescente , Biblioteca de Genes , Humanos , Microscopía Confocal , Análisis de la Célula Individual/métodos , Programas Informáticos
4.
Sci Rep ; 6: 28528, 2016 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-27339427

RESUMEN

The essential mitotic kinase Aurora A (AURKA) is controlled during cell cycle progression via two distinct mechanisms. Following activation loop autophosphorylation early in mitosis when it localizes to centrosomes, AURKA is allosterically activated on the mitotic spindle via binding to the microtubule-associated protein, TPX2. Here, we report the discovery of AurkinA, a novel chemical inhibitor of the AURKA-TPX2 interaction, which acts via an unexpected structural mechanism to inhibit AURKA activity and mitotic localization. In crystal structures, AurkinA binds to a hydrophobic pocket (the 'Y pocket') that normally accommodates a conserved Tyr-Ser-Tyr motif from TPX2, blocking the AURKA-TPX2 interaction. AurkinA binding to the Y- pocket induces structural changes in AURKA that inhibit catalytic activity in vitro and in cells, without affecting ATP binding to the active site, defining a novel mechanism of allosteric inhibition. Consistent with this mechanism, cells exposed to AurkinA mislocalise AURKA from mitotic spindle microtubules. Thus, our findings provide fresh insight into the catalytic mechanism of AURKA, and identify a key structural feature as the target for a new class of dual-mode AURKA inhibitors, with implications for the chemical biology and selective therapeutic targeting of structurally related kinases.


Asunto(s)
Aurora Quinasa A/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Mapas de Interacción de Proteínas/efectos de los fármacos , Proteínas Quinasas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Línea Celular Tumoral , Células HeLa , Humanos , Mitosis/efectos de los fármacos , Proteínas de Neoplasias/metabolismo , Fosfoproteínas/metabolismo , Unión Proteica/efectos de los fármacos , Huso Acromático/efectos de los fármacos
5.
J Vis Exp ; (94)2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25549286

RESUMEN

Advances in understanding the control mechanisms governing the behavior of cells in adherent mammalian tissue culture models are becoming increasingly dependent on modes of single-cell analysis. Methods which deliver composite data reflecting the mean values of biomarkers from cell populations risk losing subpopulation dynamics that reflect the heterogeneity of the studied biological system. In keeping with this, traditional approaches are being replaced by, or supported with, more sophisticated forms of cellular assay developed to allow assessment by high-content microscopy. These assays potentially generate large numbers of images of fluorescent biomarkers, which enabled by accompanying proprietary software packages, allows for multi-parametric measurements per cell. However, the relatively high capital costs and overspecialization of many of these devices have prevented their accessibility to many investigators. Described here is a universally applicable workflow for the quantification of multiple fluorescent marker intensities from specific subcellular regions of individual cells suitable for use with images from most fluorescent microscopes. Key to this workflow is the implementation of the freely available Cell Profiler software(1) to distinguish individual cells in these images, segment them into defined subcellular regions and deliver fluorescence marker intensity values specific to these regions. The extraction of individual cell intensity values from image data is the central purpose of this workflow and will be illustrated with the analysis of control data from a siRNA screen for G1 checkpoint regulators in adherent human cells. However, the workflow presented here can be applied to analysis of data from other means of cell perturbation (e.g., compound screens) and other forms of fluorescence based cellular markers and thus should be useful for a wide range of laboratories.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Análisis de la Célula Individual/métodos , Programas Informáticos , Biomarcadores/análisis , Técnicas de Cultivo de Célula , Colorantes Fluorescentes/química , Proteínas Fluorescentes Verdes/análisis , Humanos , Microscopía Fluorescente/métodos , Flujo de Trabajo
6.
PLoS One ; 7(2): e31627, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22384045

RESUMEN

DNA damage activates checkpoint controls which block progression of cells through the division cycle. Several different checkpoints exist that control transit at different positions in the cell cycle. A role for checkpoint activation in providing resistance of cells to genotoxic anticancer therapy, including chemotherapy and ionizing radiation, is widely recognized. Although the core molecular functions that execute different damage activated checkpoints are known, the signals that control checkpoint activation are far from understood. We used a kinome-spanning RNA interference screen to delineate signalling required for radiation-mediated retinoblastoma protein activation, the recognized executor of G(1) checkpoint control. Our results corroborate the involvement of the p53 tumour suppressor (TP53) and its downstream targets p21(CIP1/WAF1) but infer lack of involvement of canonical double strand break (DSB) recognition known for its role in activating TP53 in damaged cells. Instead our results predict signalling involving the known TP53 phosphorylating kinase PRPK/TP53RK and the JNK/p38MAPK activating kinase STK4/MST1, both hitherto unrecognised for their contribution to DNA damage G1 checkpoint signalling. Our results further predict a network topology whereby induction of p21(CIP1/WAF1) is required but not sufficient to elicit checkpoint activation. Our experiments document a role of the kinases identified in radiation protection proposing their pharmacological inhibition as a potential strategy to increase radiation sensitivity in proliferating cancer cells.


Asunto(s)
Antineoplásicos/farmacología , Daño del ADN , Fase G1 , Ciclo Celular , Línea Celular Tumoral , Supervivencia Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Regulación Neoplásica de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/metabolismo , Humanos , MAP Quinasa Quinasa 4/metabolismo , Modelos Genéticos , Interferencia de ARN , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo
7.
PLoS One ; 7(1): e28568, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22253692

RESUMEN

Human cancers often contain genetic alterations that disable G1/S checkpoint control and loss of this checkpoint is thought to critically contribute to cancer generation by permitting inappropriate proliferation and distorting fate-driven cell cycle exit. The identification of cell permeable small molecules that activate the G1/S checkpoint may therefore represent a broadly applicable and clinically effective strategy for the treatment of cancer. Here we describe the identification of several novel small molecules that trigger G1/S checkpoint activation and characterise the mechanism of action for one, CCT020312, in detail. Transcriptional profiling by cDNA microarray combined with reverse genetics revealed phosphorylation of the eukaryotic initiation factor 2-alpha (EIF2A) through the eukaryotic translation initiation factor 2-alpha kinase 3 (EIF2AK3/PERK) as the mechanism of action of this compound. While EIF2AK3/PERK activation classically follows endoplasmic reticulum (ER) stress signalling that sets off a range of different cellular responses, CCT020312 does not trigger these other cellular responses but instead selectively elicits EIF2AK3/PERK signalling. Phosphorylation of EIF2A by EIF2A kinases is a known means to block protein translation and hence restriction point transit in G1, but further supports apoptosis in specific contexts. Significantly, EIF2AK3/PERK signalling has previously been linked to the resistance of cancer cells to multiple anticancer chemotherapeutic agents, including drugs that target the ubiquitin/proteasome pathway and taxanes. Consistent with such findings CCT020312 sensitizes cancer cells with defective taxane-induced EIF2A phosphorylation to paclitaxel treatment. Our work therefore identifies CCT020312 as a novel small molecule chemical tool for the selective activation of EIF2A-mediated translation control with utility for proof-of-concept applications in EIF2A-centered therapeutic approaches, and as a chemical starting point for pathway selective agent development. We demonstrate that consistent with its mode of action CCT020312 is capable of delivering potent, and EIF2AK3 selective, proliferation control and can act as a sensitizer to chemotherapy-associated stresses as elicited by taxanes.


Asunto(s)
Activadores de Enzimas/farmacología , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Puntos de Control de la Fase S del Ciclo Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , eIF-2 Quinasa/metabolismo , Animales , Análisis por Conglomerados , Ciclina D1/metabolismo , ADN Complementario/genética , Evaluación Preclínica de Medicamentos , Interacciones Farmacológicas , Estrés del Retículo Endoplásmico/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Activadores de Enzimas/química , Factor 2 Eucariótico de Iniciación/metabolismo , Humanos , Ratones , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos , Paclitaxel/farmacología , Fosforilación/efectos de los fármacos , Proteína de Retinoblastoma/metabolismo , Transcriptoma/efectos de los fármacos , Transcriptoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA