Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biophys J ; 121(8): 1435-1448, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35300969

RESUMEN

The patch-clamp method, which was awarded the Nobel Prize in 1991, is a well-established and indispensable method to study ion channels in living cells and to biophysically characterize non-voltage-gated ion channels, which comprise about 70% of all ion channels in the human genome. To investigate the biophysical properties of non-voltage-gated ion channels, whole-cell measurements with application of continuous voltage ramps are routinely conducted to obtain current-voltage (IV) relationships. However, adequate tools for detailed and quantitative analysis of IV curves are still missing. We use the example of the transient receptor potential classical (TRPC) channel family to elucidate whether the normalized slope conductance (NSC) is an appropriate tool for reliable discrimination of the IV curves of diverse TRPC channels that differ in their individual curve progression. We provide a robust calculation method for the NSC, and, by applying this method, we find that TRPC channel activators and modulators can evoke different NSC progressions independent from their expression levels, which points to distinguishable active channel states. TRPC6 mutations in patients with focal segmental glomerulosclerosis resulted in distinct NSC progressions, suggesting that the NSC is suitable for investigating structure-function relations and might help unravel the unknown pathomechanisms leading to focal segmental glomerulosclerosis. The NSC is an effective algorithm for extended biophysical characterization of non-voltage-gated ion channels.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Biofisica , Femenino , Humanos , Canales Iónicos , Masculino , Técnicas de Placa-Clamp
2.
Proc Natl Acad Sci U S A ; 114(1): E37-E46, 2017 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-27994151

RESUMEN

The activation mechanism of the classical transient receptor potential channels TRPC4 and -5 via the Gq/11 protein-phospholipase C (PLC) signaling pathway has remained elusive so far. In contrast to all other TRPC channels, the PLC product diacylglycerol (DAG) is not sufficient for channel activation, whereas TRPC4/5 channel activity is potentiated by phosphatidylinositol 4,5-bisphosphate (PIP2) depletion. As a characteristic structural feature, TRPC4/5 channels contain a C-terminal PDZ-binding motif allowing for binding of the scaffolding proteins Na+/H+ exchanger regulatory factor (NHERF) 1 and 2. PKC inhibition or the exchange of threonine for alanine in the C-terminal PDZ-binding motif conferred DAG sensitivity to the channel. Altogether, we present a DAG-mediated activation mechanism for TRPC4/5 channels tightly regulated by NHERF1/2 interaction. PIP2 depletion evokes a C-terminal conformational change of TRPC5 proteins leading to dynamic dissociation of NHERF1/2 from the C terminus of TRPC5 as a prerequisite for DAG sensitivity. We show that NHERF proteins are direct regulators of ion channel activity and that DAG sensitivity is a distinctive hallmark of TRPC channels.


Asunto(s)
Diglicéridos/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfoproteínas/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Canales Catiónicos TRPC/metabolismo , Fosfolipasas de Tipo C/metabolismo , Animales , Células CHO , Línea Celular , Cricetulus , Activación Enzimática/fisiología , Células HEK293 , Humanos , Fosfoproteínas/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , Intercambiadores de Sodio-Hidrógeno/genética
3.
Mol Pharmacol ; 96(1): 90-98, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31171574

RESUMEN

Although the overall structure of many classical transient receptor potential proteins (TRPC), including human and murine TRPC6, were recently resolved by cryoelectron microscopy analysis, structural changes during channel activation by 1-oleoyl-1-acetyl-sn-glycerol (OAG), the membrane-permeable analog of diacylglycerol, were not defined. Moreover, data on carboxyl- and amino-terminal interactions were not provided, as the amino-terminal regions of murine and human TRPC6 were not resolved. Therefore, we employed a Förster resonance energy transfer (FRET) approach using a small fluorescein arsenical hairpin (FlAsH) targeted to a short tetracysteine sequence at the unresolved amino-terminus and cerulean, a cyan fluorescent protein, as a tag at the carboxyl-terminus of the murine TRPC6 protein. After OAG as well as GSK-1702934A activation, FRET efficiency was simultaneously and significantly reduced, indicating a decreased interaction between the amino to carboxyl termini in the functional tagged murine TRPC6 tetramer (TRPC6 WT) heterologously expressed in human embryonic kidney 293T cells. There was a significant reduction in the FRET signal obtained from analysis of murine TRPC6 FRET constructs with homologous amino-terminal mutations (M131T, G108S) that had been identified in human patients with inherited focal segmental glomerulosclerosis, a condition that can lead to end-stage renal disease. A novel, designed loss-of-function TRPC6 mutation (N109A) in the amino-terminus in close proximity to the carboxyl-terminus produced similar FRET ratios. SIGNIFICANCE STATEMENT: Our data show for the first time that FlAsH-tagging of ion channels is a promising tool to study conformational changes after channel opening and may significantly advance the analysis of ion channel activation as well as their mutants involved in channelopathies.


Asunto(s)
Diglicéridos/farmacología , Proteínas Fluorescentes Verdes/química , Canal Catiónico TRPC6/química , Canal Catiónico TRPC6/metabolismo , Animales , Diglicéridos/química , Transferencia Resonante de Energía de Fluorescencia , Células HEK293 , Humanos , Ratones , Mutación , Técnicas de Placa-Clamp , Canal Catiónico TRPC6/genética
4.
Pflugers Arch ; 469(5-6): 725-737, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28386636

RESUMEN

Analysis of G-protein-coupled receptor (GPCR) signaling, in particular of the second messenger cAMP that is tightly controlled by Gs- and Gi/o-proteins, is a central issue in biomedical research. The classical biochemical method to monitor increases in intracellular cAMP concentrations consists of a radioactive multicellular assay, which is well established, highly sensitive, and reproducible, but precludes continuous spatial and temporal assessment of cAMP levels in single living cells. For this purpose, Förster resonance energy transfer (FRET)-based Epac cAMP sensors are well suitable. So far, the latter sensors have been employed to monitor Gs-induced cAMP increases and it has remained elusive whether Epac sensors can reliably detect decreased intracellular cAMP levels as well. In this study, we systematically optimize experimental strategies employing FRET-based cAMP sensors to monitor Gi/o-mediated cAMP reductions. FRET experiments with adrenergic α2A or µ opioid receptors and a set of different Epac sensors allowed for time-resolved, valid, and reliable detection of cAMP level decreases upon Gi/o-coupled receptor activation in single living cells, and this effect can be reversed by selective receptor antagonists. Moreover, pre-treatment with forskolin or 3-isobutyl-1-methylxanthine (IBMX) to artificially increase basal cAMP levels was not required to monitor Gi/o-coupled receptor activation. Thus, using FRET-based cAMP sensors is of major advantage when compared to classical biochemical and multi-cellular assays.


Asunto(s)
AMP Cíclico/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Proteínas Fluorescentes Verdes/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/genética , Células HEK293 , Humanos
5.
Biochim Biophys Acta Mol Basis Dis ; 1863(2): 560-568, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27932059

RESUMEN

Pulmonary fibrosis (PF) is a chronic progressive lung disease without effective medical treatment options leading to respiratory failure and death within 3-5years of diagnosis. The pathological process of PF is driven by aberrant wound-healing involving fibroblasts and myofibroblasts differentiated by secreted profibrotic transforming growth factor ß (TGF-ß1). Classical transient receptor potential 6 (TRPC6), a Na+- and Ca2+-permeable cation channel, is able to promote myofibroblast conversion of primary rat cardiac and human dermal fibroblasts and TRPC6-deficiency impaired wound healing after injury. To study a potential role of TRPC6 in the development of PF we analyzed lung function, gene and protein expression in wild-type (WT) and TRPC6-deficient (TRPC6-/-) lungs utilizing a bleomycin-induced PF-model. Fibrotic WT-mice showed a significant higher death rate while bleomycin-treated TRPC6-deficient mice were partly protected from fibrosis as a consequence of a lower production of collagen and an almost normal function of the respiratory system (reduced resistance and elastance compared to fibrotic WT-mice). On a molecular level TGF-ß1 induced TRPC6 up-regulation, increased Ca2+ influx and nuclear NFAT localization in WT primary murine lung fibroblasts (PMLFs) resulting in higher stress fiber formation and accelerated contraction rates as compared to treated TRPC6-deficient fibroblasts. Therefore, we conclude that TRPC6 is an important determinant for TGF-ß1-induced myofibroblast differentiation during fibrosis and specific channel inhibitors might be beneficial in a future treatment of PF.


Asunto(s)
Pulmón/patología , Miofibroblastos/patología , Fibrosis Pulmonar/metabolismo , Canales Catiónicos TRPC/metabolismo , Animales , Diferenciación Celular , Transdiferenciación Celular , Células Cultivadas , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Eliminación de Gen , Pulmón/metabolismo , Ratones , Ratones Endogámicos C57BL , Miofibroblastos/metabolismo , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/patología , Canales Catiónicos TRPC/genética , Canal Catiónico TRPC6 , Factor de Crecimiento Transformador beta1/metabolismo , Regulación hacia Arriba
6.
J Am Soc Nephrol ; 27(3): 848-62, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26160898

RESUMEN

Podocytes are specialized, highly differentiated epithelial cells in the kidney glomerulus that are exposed to glomerular capillary pressure and possible increases in mechanical load. The proteins sensing mechanical forces in podocytes are unconfirmed, but the classic transient receptor potential channel 6 (TRPC6) interacting with the MEC-2 homolog podocin may form a mechanosensitive ion channel complex in podocytes. Here, we observed that podocytes respond to mechanical stimulation with increased intracellular calcium concentrations and increased inward cation currents. However, TRPC6-deficient podocytes responded in a manner similar to that of control podocytes, and mechanically induced currents were unaffected by genetic inactivation of TRPC1/3/6 or administration of the broad-range TRPC blocker SKF-96365. Instead, mechanically induced currents were significantly decreased by the specific P2X purinoceptor 4 (P2X4) blocker 5-BDBD. Moreover, mechanical P2X4 channel activation depended on cholesterol and podocin and was inhibited by stabilization of the actin cytoskeleton. Because P2X4 channels are not intrinsically mechanosensitive, we investigated whether podocytes release ATP upon mechanical stimulation using a fluorometric approach. Indeed, mechanically induced ATP release from podocytes was observed. Furthermore, 5-BDBD attenuated mechanically induced reorganization of the actin cytoskeleton. Altogether, our findings reveal a TRPC channel-independent role of P2X4 channels as mechanotransducers in podocytes.


Asunto(s)
Adenosina Trifosfato/metabolismo , Calcio/metabolismo , Mecanotransducción Celular , Podocitos/metabolismo , Receptores Purinérgicos P2X4/fisiología , Adenosina Trifosfato/farmacología , Animales , Benzodiazepinonas/farmacología , Células Cultivadas , Colesterol/metabolismo , Citoesqueleto/ultraestructura , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mecanotransducción Celular/efectos de los fármacos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Antagonistas del Receptor Purinérgico P2X/farmacología , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X4/metabolismo , Estrés Mecánico , Canales Catiónicos TRPC/deficiencia , Canales Catiónicos TRPC/genética , Canal Catiónico TRPC6
7.
Microcirculation ; 23(8): 621-625, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27344060

RESUMEN

Myogenic vasoconstriction (Bayliss effect) is mediated by vascular smooth muscle cells (VSMCs) of small resistance arteries sensing mechanical forces. During the last three decades, several proteins have been proposed as VSMC mechanosensors. Our previous studies highlighted agonist-independent mechanical activation of Gq/11 protein-coupled receptors (Gq/11 PCRs) in VSMCs of resistance arteries. In particular, angiotensin II AT1 receptors (AT1 Rs) emerged as mechanosensors mediating myogenic tone. Moreover, we found that the AT1B receptor isoform was more mechanosensitive than the AT1A receptor. Interestingly, cysteinyl leukotriene 1 receptors (CysLT1 Rs) were up-regulated in AT1 R-deficient arteries as an essential backup strategy to compensate for the loss of vasoconstrictor receptors. Up-regulation of CysLT1 Rs resulted in increased myogenic tone at low intraluminal pressures resulting in hyperactivity of AT1 R-deficient arteries. Only at high intraluminal pressures myogenic tone was reduced, thus reflecting the loss of AT1 Rs. Further, CysLT1 Rs were involved in myogenic vasoconstriction of wild-type arteries. Simultaneous blockade of AT1 Rs and CysLT1 Rs in wild-type arteries caused reduction in myogenic tone of more than 60% comparable to the application of the selective Gq/11 -protein inhibitor YM-254890. Our findings suggest that AT1 Rs and CysLT1 Rs are crucial mechanosensors in resistance arteries mediating 60% of myogenic vasoconstriction via the Gq/11 -protein pathway without involvement of endogenous agonists.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gq-G11/fisiología , Músculo Liso Vascular/fisiología , Receptor de Angiotensina Tipo 1/fisiología , Receptores Acoplados a Proteínas G/fisiología , Receptores de Leucotrienos/fisiología , Vasoconstricción , Animales , Fenómenos Biomecánicos , Humanos , Mecanorreceptores , Mecanotransducción Celular , Ratones , Miocitos del Músculo Liso
8.
Arterioscler Thromb Vasc Biol ; 35(1): 121-6, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25395620

RESUMEN

OBJECTIVE: Myogenic vasoconstriction is mediated by vascular smooth muscle cells of resistance arteries sensing mechanical stretch. Angiotensin II AT1 receptors and in particular AT1BRs in murine vascular smooth muscle cells have been characterized as mechanosensors that cannot fully account for myogenic vasoconstriction observed. Therefore, we aimed at uncovering novel vascular mechanosensors by expression profiling and functional characterization of candidate proteins. APPROACH AND RESULTS: Analyzing myogenic tone of isolated murine mesenteric arteries of AT1A and AT1B receptor double gene-deficient (AT1A/1B (-/-)) mice ex vivo, we observed a decreased myogenic tone at high intraluminal pressures and an unexpected hyper-reactivity at low intraluminal pressures because of upregulation of cysteinyl leukotriene 1 receptors (CysLT1Rs). Pharmacological blockade of CysLT1Rs with pranlukast significantly reduced myogenic tone not only in AT1A/1B (-/-) but also in wild-type arteries. In wild-type arteries, additional blockade of angiotensin II AT1 receptors with candesartan resulted in an additive reduction of myogenic tone. Furthermore, calcium imaging experiments were performed with fura-2-loaded human embryonic kidney 293 cells overexpressing CysLT1Rs and with isolated mesenteric vascular smooth muscle cells. Hypo-osmotically induced membrane stretch provoked calcium transients that were significantly reduced by pranlukast. Incubations of isolated mesenteric vascular smooth muscle cells with the 5-lipoxygenase inhibitor zileuton had no effect. Furthermore, the Gq/11-protein inhibitor YM 254890 profoundly reduced myogenic tone to the same extent as induced by the application of pranlukast plus candesartan. CONCLUSIONS: Here, we identify a novel, hitherto unappreciated role of CysLT1Rs in vascular regulation. We identified CysLT1Rs as novel mechanosensors in the vasculature involved in myogenic vasoconstriction. Moreover, our findings suggest that myogenic tone is determined by AT1 and CysLT1 receptors acting together as mechanosensors via Gq/11-protein activation.


Asunto(s)
Mecanorreceptores/metabolismo , Mecanotransducción Celular , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , Receptores de Leucotrienos/metabolismo , Vasoconstricción , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Animales , Presión Arterial , Señalización del Calcio , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Células HEK293 , Humanos , Antagonistas de Leucotrieno/farmacología , Masculino , Mecanorreceptores/efectos de los fármacos , Mecanotransducción Celular/efectos de los fármacos , Arterias Mesentéricas/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Receptor de Angiotensina Tipo 1/deficiencia , Receptor de Angiotensina Tipo 1/genética , Receptores de Leucotrienos/efectos de los fármacos , Receptores de Leucotrienos/genética , Transfección , Vasoconstricción/efectos de los fármacos
9.
J Cell Physiol ; 230(6): 1389-99, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25521631

RESUMEN

In eukaryotic cells, activation of phospholipase C (PLC)-coupled membrane receptors by hormones leads to an increase in the intracellular Ca(2+) concentration [Ca(2+) ]i . Catalytic activity of PLCs results in the hydrolysis of phosphatidylinositol 4,5-bisphosphate to generate inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG) which opens DAG-sensitive classical transient receptor channels 3, 6, and 7 (TRPC3/6/7), initiating Ca(2+) influx from the extracellular space. Patients with focal segmental glomerulosclerosis (FSGS) express gain-of-function mutants of TRPC6, while others carry loss-of-function mutants of PLCε, raising the intriguing possibility that both proteins interact and might work in the same signalling pathway. While TRPC6 activation by PLCß and PLCγ isozymes was extensively studied, the role of PLCε in TRPC6 activation remains elusive. TRPC6 was co-immunoprecipitated with PLCε in a heterologous overexpression system in HEK293 cells as well as in freshly isolated murine podocytes. Receptor-operated TRPC6 currents in HEK293 cells expressing TRPC6 were reduced by a specific PLCε siRNA and by a PLCε loss-of-function mutant isolated from a patient with FSGS. PLCε-induced TRPC6 activation was also identified in murine embryonic fibroblasts (MEFs) lacking Gαq/11 proteins. Further analysis of the signal transduction pathway revealed a Gα12/13 Rho-GEF activation which induced Rho-mediated PLCε stimulation. Therefore, we identified a new pathway for TRPC6 activation by PLCε. PLCε-/- podocytes however, were undistinguishable from WT podocytes in their angiotensin II-induced formation of actin stress fibers and their GTPγS-induced TRPC6 activation, pointing to a redundant role of PLCε-mediated TRPC6 activation at least in podocytes.


Asunto(s)
Fosfoinositido Fosfolipasa C/metabolismo , Podocitos/metabolismo , Canales Catiónicos TRPC/metabolismo , Animales , Señalización del Calcio/fisiología , Células HEK293 , Humanos , Inositol 1,4,5-Trifosfato/metabolismo , Ratones , Ratones Noqueados , Transducción de Señal/fisiología , Canal Catiónico TRPC6
10.
Pflugers Arch ; 466(7): 1343-53, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24101294

RESUMEN

Myogenic vasoconstriction is an inherent property of vascular smooth muscle cells (VSMCs) of resistance arteries harboring ill-defined mechanosensing and mechanotransducing elements. G protein-coupled receptors (GPCRs) are discussed as mechanosensors in VSMCs. In this study, we sought to identify and characterize the role and impact of GPCRs on myogenic vasoconstriction. Thus, we analyzed mRNA expression levels of GPCRs in resistance versus preceding conduit arteries revealing a significant enrichment of several GPCRs in resistance vessels. Selective pharmacological blockade of the highly expressed GPCRs in isolated murine mesenteric arteries ex vivo decreased myogenic vasoconstriction. In particular, candesartan and losartan most prominently suppressed myogenic tone, suggesting that AT1 receptors play a central role in myogenic vasoconstriction. Analyzing angiotensinogen(-/-) mice, a relevant contribution of locally produced angiotensin II to myogenic tone could be excluded. Investigation of AT1A (-/-) and AT1B (-/-) murine mesenteric arteries revealed that AT1B, but not AT1A, receptors are key components of myogenic regulation. This notion was supported by examining fura-2-loaded isolated AT1A (-/-) and AT1B (-/-) VSMCs. Our results indicate that in VSMCs, AT1B receptors are more mechanosensitive than AT1A receptors even at comparable receptor expression levels. Furthermore, we demonstrate that the mechanosensitivity of GPCRs is agonist-independent and positively correlates with receptor expression levels.


Asunto(s)
Músculo Liso Vascular/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , Vasoconstricción , Angiotensina II/metabolismo , Angiotensinógeno/genética , Angiotensinógeno/metabolismo , Animales , Células Cultivadas , Masculino , Arterias Mesentéricas/citología , Arterias Mesentéricas/metabolismo , Arterias Mesentéricas/fisiología , Ratones , Músculo Liso Vascular/citología , Músculo Liso Vascular/fisiología , Miocitos del Músculo Liso/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor de Angiotensina Tipo 1/genética
11.
Am J Respir Crit Care Med ; 188(12): 1451-9, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24251695

RESUMEN

RATIONALE: Pulmonary hypertension (PH) is a life-threatening disease, characterized by pulmonary vascular remodeling. Abnormal smooth muscle cell proliferation is a primary hallmark of chronic hypoxia-induced PH. Essential for cell growth are alterations in the intracellular Ca(2+) homeostasis. Classical transient receptor potential (TRPC) proteins have been suggested to contribute to PH development, as TRPC1 and TRPC6 are predominantly expressed in precapillary pulmonary arterial smooth muscle cells (PASMC). Studies in a TRPC6-deficient mouse model revealed an essential function of TRPC6 in acute but not in chronic hypoxia. OBJECTIVES: We aimed to identify the importance of TRPC1 in the pathogenesis of chronic hypoxia-induced PH in mice. METHODS: TRPC1 expression analysis was performed using real-time polymerase chain reaction. TRPC1 function was assessed by in vivo experiments in TRPC1(-/-) animals as well as in isolated precapillary murine PASMC after TRPC1 knockdown by TRPC1-specific small interfering RNAs. MEASUREMENTS AND MAIN RESULTS: Only TRPC1 mRNA was up-regulated under hypoxia in isolated murine PASMC (1% O2 for 72 h). Hypoxia-induced proliferation of murine PASMC was attenuated in cells treated with small interfering RNA against TRPC1 and in cells isolated from TRPC1(-/-) animals compared with untreated and wild-type cells. TRPC1(-/-) mice did not develop PH in response to chronic hypoxia (FI(O2) 0.10 for 21 d) and had less vascular muscularization but a similar degree of right ventricular hypertrophy compared with wild-type mice. CONCLUSIONS: Our results indicate an important role of TRPC1 in pulmonary vascular remodeling underlying the development of hypoxia-induced PH.


Asunto(s)
Hipertensión Pulmonar/metabolismo , Hipoxia/complicaciones , Canales Catiónicos TRPC/metabolismo , Animales , Biomarcadores/metabolismo , Western Blotting , Células Cultivadas , Enfermedad Crónica , Femenino , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/patología , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Reacción en Cadena en Tiempo Real de la Polimerasa , Canales Catiónicos TRPC/deficiencia , Regulación hacia Arriba
12.
J Biol Chem ; 287(5): 3530-40, 2012 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-22157757

RESUMEN

Specific biological roles of the classical transient receptor potential channel 1 (TRPC1) are still largely elusive. To investigate the function of TRPC1 proteins in cell physiology, we studied heterologously expressed TRPC1 channels and found that recombinant TRPC1 subunits do not form functional homomeric channels. Instead, by electrophysiological analysis TRPC1 was shown to form functional heteromeric, receptor-operated channel complexes with TRPC3, -4, -5, -6, and -7 indicating that TRPC1 proteins can co-assemble with all members of the TRPC subfamily. In all TRPC1-containing heteromers, TRPC1 subunits significantly decreased calcium permeation. The exchange of select amino acids in the putative pore-forming region of TRPC1 further reduced calcium permeability, suggesting that TRPC1 subunits contribute to the channel pore. In immortalized immature gonadotropin-releasing hormone neurons endogenously expressing TRPC1, -2, -5, and -6, down-regulation of TRPC1 resulted in increased calcium permeability and elevated basal cytosolic calcium concentrations. We did not observe any involvement of TRPC1 in store-operated cation influx. Notably, TRPC1 suppressed the migration of gonadotropin-releasing hormone neurons without affecting cell proliferation. Conversely, in TRPC1 knockdown neurons, specific migratory properties like distance covered, locomotion speed, and directionality were increased. These findings suggest a novel regulatory mechanism relying on the expression of TRPC1 and the subsequent formation of heteromeric TRPC channel complexes with reduced calcium permeability, thereby fine-tuning neuronal migration.


Asunto(s)
Calcio/metabolismo , Movimiento Celular/fisiología , Neuronas/metabolismo , Canales Catiónicos TRPC/metabolismo , Animales , Células CHO , Cricetinae , Cricetulus , Regulación de la Expresión Génica/fisiología , Técnicas de Silenciamiento del Gen , Hormona Liberadora de Gonadotropina/metabolismo , Células HEK293 , Humanos , Ratones , Neuronas/citología , Permeabilidad , Estructura Cuaternaria de Proteína , Ratas , Canales Catiónicos TRPC/genética , Canal Catiónico TRPC6
14.
EMBO J ; 27(23): 3092-103, 2008 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-18987636

RESUMEN

Despite the central physiological function of the myogenic response, the underlying signalling pathways and the identity of mechanosensors in vascular smooth muscle (VSM) are still elusive. In contrast to present thinking, we show that membrane stretch does not primarily gate mechanosensitive transient receptor potential (TRP) ion channels, but leads to agonist-independent activation of G(q/11)-coupled receptors, which subsequently signal to TRPC channels in a G protein- and phospholipase C-dependent manner. Mechanically activated receptors adopt an active conformation, allowing for productive G protein coupling and recruitment of beta-arrestin. Agonist-independent receptor activation by mechanical stimuli is blocked by specific antagonists and inverse agonists. Increasing the AT(1) angiotensin II receptor density in mechanically unresponsive rat aortic A7r5 cells resulted in mechanosensitivity. Myogenic tone of cerebral and renal arteries is profoundly diminished by the inverse angiotensin II AT(1) receptor agonist losartan independently of angiotensin II (AII) secretion. This inhibitory effect is enhanced in blood vessels of mice deficient in the regulator of G-protein signalling-2. These findings suggest that G(q/11)-coupled receptors function as sensors of membrane stretch in VSM cells.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Mecanorreceptores/fisiología , Músculo Liso Vascular/fisiología , Receptores Acoplados a Proteínas G/fisiología , Vasoconstricción , Angiotensina II/metabolismo , Animales , Arrestinas/metabolismo , Línea Celular , Humanos , Ratas , Ratas Sprague-Dawley , Receptores de Angiotensina/fisiología , Canales de Potencial de Receptor Transitorio/metabolismo , Fosfolipasas de Tipo C/metabolismo , beta-Arrestinas
15.
Am J Physiol Heart Circ Physiol ; 302(6): H1241-9, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22227128

RESUMEN

Mechanosensation and -transduction are important for physiological processes like the senses of touch, hearing, and balance. The mechanisms underlying the translation of mechanical stimuli into biochemical information by activating various signaling pathways play a fundamental role in physiology and pathophysiology but are only poorly understood. Recently, G protein-coupled receptors (GPCRs), which are essential for the conversion of light, olfactory and gustatory stimuli, as well as of primary messengers like hormones and neurotransmitters into cellular signals and which play distinct roles in inflammation, cell growth, and differentiation, have emerged as potential mechanosensors. The first candidate for a mechanosensitive GPCR was the angiotensin-II type-1 (AT(1)) receptor. Agonist-independent mechanical receptor activation of AT(1) receptors induces an active receptor conformation that appears to differ from agonist-induced receptor conformations and entails the activation of G proteins. Mechanically induced AT(1) receptor activation plays an important role for myogenic vasoconstriction and for the initiation of cardiac hypertrophy. A growing body of evidence suggests that other GPCRs are involved in mechanosensation as well. These findings highlight physiologically relevant, ligand-independent functions of GPCRs and add yet another facet to the polymodal activation spectrum of this ubiquitous protein family.


Asunto(s)
Mecanorreceptores/metabolismo , Mecanotransducción Celular , Receptores Acoplados a Proteínas G/metabolismo , Animales , Sistema Cardiovascular/metabolismo , Enzimas/metabolismo , Humanos , Canales Iónicos/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Estrés Mecánico
16.
Cell Calcium ; 97: 102414, 2021 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-33930818

RESUMEN

The transient receptor potential classical or canonical (TRPC) 5 channel is a non-selective calcium-permeable cation channel that recently emerged as a promising target for the treatment of various diseases such as mental disorders and kidney diseases. Thus, detailed insight into the structural properties of TRPC5 channels is of utmost importance to further advance TRPC5 channels as drug targets. Recently, Song et al. (2021) have presented cryo-EM structures of the human TRPC5 channel alone or in complex with two different inhibitors thereby revealing two new distinct drug binding sites. Moreover, a binding site for the second messenger diacylglycerol (DAG) has been identified commensurate with a key role of DAG for TRPC5 channel activation.

17.
STAR Protoc ; 2(2): 100527, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34027485

RESUMEN

Small molecular probes designed for photopharmacology and opto-chemogenetics are rapidly gaining widespread recognition for investigations of transient receptor potential canonical (TRPC) channels. This protocol describes the use of three photoswitchable diacylglycerol analogs-PhoDAG-1, PhoDAG-3, and OptoDArG-for ultrarapid activation and deactivation of native TRPC2 channels in mouse vomeronasal sensory neurons and olfactory type B cells, as well as heterologously expressed human TRPC6 channels. Photoconversion can be achieved in mammalian tissue slices and enables all-optical stimulation and shutoff of TRPC channels. For complete details on the use and execution of this protocol, please refer to Leinders-Zufall et al. (2018).


Asunto(s)
Técnicas Citológicas/métodos , Diglicéridos , Procesos Fotoquímicos , Canales de Potencial de Receptor Transitorio , Animales , Células Cultivadas , Diglicéridos/química , Diglicéridos/farmacología , Ratones , Neuronas Receptoras Olfatorias/citología , Canales de Potencial de Receptor Transitorio/análisis , Canales de Potencial de Receptor Transitorio/química , Canales de Potencial de Receptor Transitorio/efectos de los fármacos , Canales de Potencial de Receptor Transitorio/metabolismo , Órgano Vomeronasal/citología
18.
ChemMedChem ; 15(7): 566-570, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32162837

RESUMEN

Molecular shape and pharmacological function are interconnected. To capture shape, the fractal dimensionality concept was employed, providing a natural similarity measure for the virtual screening of de novo generated small molecules mimicking the structurally complex natural product (-)-englerin A. Two of the top-ranking designs were synthesized and tested for their ability to modulate transient receptor potential (TRP) cation channels which are cellular targets of (-)-englerin A. Intracellular calcium assays and electrophysiological whole-cell measurements of TRPC4 and TRPM8 channels revealed potent inhibitory effects of one of the computer-generated compounds. Four derivatives of this identified hit compound had comparable effects on TRPC4 and TRPM8. The results of this study corroborate the use of fractal dimensionality as an innovative shape-based molecular representation for molecular scaffold-hopping.


Asunto(s)
Diseño de Fármacos , Sesquiterpenos de Guayano/farmacología , Canales Catiónicos TRPC/antagonistas & inhibidores , Canales Catiónicos TRPM/antagonistas & inhibidores , Células HEK293 , Humanos , Modelos Moleculares , Estructura Molecular , Sesquiterpenos de Guayano/síntesis química , Sesquiterpenos de Guayano/química , Canales Catiónicos TRPC/metabolismo , Canales Catiónicos TRPM/metabolismo
19.
Nat Commun ; 10(1): 5784, 2019 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-31857598

RESUMEN

G-protein coupled receptors (GPCRs) are versatile cellular sensors for chemical stimuli, but also serve as mechanosensors involved in various (patho)physiological settings like vascular regulation, cardiac hypertrophy and preeclampsia. However, the molecular mechanisms underlying mechanically induced GPCR activation have remained elusive. Here we show that mechanosensitive histamine H1 receptors (H1Rs) are endothelial sensors of fluid shear stress and contribute to flow-induced vasodilation. At the molecular level, we observe that H1Rs undergo stimulus-specific patterns of conformational changes suggesting that mechanical forces and agonists induce distinct active receptor conformations. GPCRs lacking C-terminal helix 8 (H8) are not mechanosensitive, and transfer of H8 to non-responsive GPCRs confers, while removal of H8 precludes, mechanosensitivity. Moreover, disrupting H8 structural integrity by amino acid exchanges impairs mechanosensitivity. Altogether, H8 is the essential structural motif endowing GPCRs with mechanosensitivity. These findings provide a mechanistic basis for a better understanding of the roles of mechanosensitive GPCRs in (patho)physiology.


Asunto(s)
Membrana Celular/fisiología , Mecanotransducción Celular/fisiología , Receptores Histamínicos H1/ultraestructura , Animales , Endotelio Vascular/citología , Endotelio Vascular/fisiología , Técnicas de Silenciamiento del Gen , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Ratones , Ratones Noqueados , Músculo Liso/citología , Músculo Liso/fisiología , Mutagénesis Sitio-Dirigida , Miografía , Conformación Proteica en Hélice alfa/fisiología , Receptores Histamínicos H1/fisiología , Estrés Mecánico
20.
Mol Cell Biol ; 25(16): 6980-9, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16055711

RESUMEN

Among the TRPC subfamily of TRP (classical transient receptor potential) channels, TRPC3, -6, and -7 are gated by signal transduction pathways that activate C-type phospholipases as well as by direct exposure to diacylglycerols. Since TRPC6 is highly expressed in pulmonary and vascular smooth muscle cells, it represents a likely molecular candidate for receptor-operated cation entry. To define the physiological role of TRPC6, we have developed a TRPC6-deficient mouse model. These mice showed an elevated blood pressure and enhanced agonist-induced contractility of isolated aortic rings as well as cerebral arteries. Smooth muscle cells of TRPC6-deficient mice have higher basal cation entry, increased TRPC-carried cation currents, and more depolarized membrane potentials. This higher basal cation entry, however, was completely abolished by the expression of a TRPC3-specific small interference RNA in primary TRPC6(-)(/)(-) smooth muscle cells. Along these lines, the expression of TRPC3 in wild-type cells resulted in increased basal activity, while TRPC6 expression in TRPC6(-/-) smooth muscle cells reduced basal cation influx. These findings imply that constitutively active TRPC3-type channels, which are up-regulated in TRPC6-deficient smooth muscle cells, are not able to functionally replace TRPC6. Thus, TRPC6 has distinct nonredundant roles in the control of vascular smooth muscle tone.


Asunto(s)
Canales de Calcio/genética , Canales de Calcio/fisiología , Contracción Muscular , Músculo Liso Vascular/citología , Animales , Aorta/patología , Arterias/citología , Bario/farmacología , Presión Sanguínea , Western Blotting , Cationes , ADN Complementario/metabolismo , Dependovirus/genética , Electrofisiología , Electroporación , Vectores Genéticos , Canales Iónicos/metabolismo , Ratones , Ratones Transgénicos , Modelos Genéticos , Músculos/citología , Miocitos del Músculo Liso/citología , Técnicas de Placa-Clamp , Fenilefrina/farmacología , Presión , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Canales Catiónicos TRPC , Canal Catiónico TRPC6 , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA