Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(11)2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38891981

RESUMEN

Mesenchymal stem cells (MSCs), pivotal for tissue repair, utilize collagen to restore structural integrity in damaged tissue, preserving its organization through concomitant remodeling. The non-enzymatic glycation of collagen potentially compromises MSC communication, particularly upon advancing the process, underlying various pathologies such as late-stage diabetic complications and aging. However, an understanding of the impact of early-stage collagen glycation on MSC interaction is lacking. This study examines the fate of in vitro glycated rat tail collagen (RTC) upon exposure to glucose for 1 or 5 days in contact with MSCs. Utilizing human adipose tissue-derived MSCs (ADMSCs), we demonstrate their significantly altered interaction with glycated collagen, characterized morphologically by reduced cell spreading, diminished focal adhesions formation, and attenuated development of the actin cytoskeleton. The morphological findings were confirmed by ImageJ 1.54g morphometric analysis with the most significant drop in the cell spreading area (CSA), from 246.8 µm2 for the native collagen to 216.8 µm2 and 163.7 µm2 for glycated ones, for 1 day and 5 days, respectively, and a similar trend was observed for cell perimeter 112.9 µm vs. 95.1 µm and 86.2 µm, respectively. These data suggest impaired recognition of early glycated collagen by integrin receptors. Moreover, they coincide with the reduced fibril-like reorganization of adsorbed FITC-collagen (indicating impaired remodeling) and a presumed decreased sensitivity to proteases. Indeed, confirmatory assays reveal diminished FITC-collagen degradation for glycated samples at 1 day and 5 days by attached cells (22.8 and 30.4%) and reduced proteolysis upon exogenous collagenase addition (24.5 and 40.4%) in a cell-free system, respectively. The mechanisms behind these effects remain uncertain, although differential scanning calorimetry confirms subtle structural/thermodynamic changes in glycated collagen.


Asunto(s)
Colágeno , Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Humanos , Colágeno/metabolismo , Glicosilación , Animales , Ratas , Comunicación Celular , Células Cultivadas , Glucosa/metabolismo , Tejido Adiposo/metabolismo , Tejido Adiposo/citología , Adhesiones Focales/metabolismo , Adhesiones Focales/efectos de los fármacos
2.
Polymers (Basel) ; 14(19)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36235908

RESUMEN

Mesenchymal stem cells (MSCs) are involved in the process of extracellular matrix (ECM) remodeling where collagens play a pivotal role. We recently demonstrated that the remodeling of adsorbed collagen type I might be disordered upon oxidation following its fate in the presence of human adipose-derived MSC (ADMSCs). With the present study we intended to learn more about the effect of polyphenolic antioxidant Epigallocatechin-3-gallate (EGCG), attempting to mimic the conditions of oxidative stress in vivo and its putative prevention by antioxidants. Collagen Type I was isolated from mouse tail tendon (MTC) and labelled with FITC before being oxidized according to Fe2+/H2O2 protocol. FITC-collagen remodeling by ADMSC was assessed morphologically before and after EGCG pretreatment and confirmed via detailed morphometric analysis measuring the anisotropy index (AI) and fluorescence intensity (FI) in selected regions of interest (ROI), namely: outside the cells, over the cells, and central (nuclear/perinuclear) region, whereas the pericellular proteolytic activity was measured by de-quenching fluorescent collagen probes (FRET effect). Here we provide morphological evidence that MTC undergoes significant reorganization by the adhering ADMSC and is accompanied by a substantial activation of pericellular proteolysis, and further confirm that both processes are suppressed upon collagen oxidation. An important observation was that this abrogated remodeling cannot be prevented by the EGCG pretreatment. Conversely, the detailed morphometric analysis showed that oxidized FITC-collagen tends to accumulate beneath cells and around cell nuclei, suggesting the activation of alternative routes for its removal, such as internalization and/or transcytosis. Morphometric analysis also revealed that both processes are supported by EGCG pretreatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA