Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Nature ; 524(7565): 361-5, 2015 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-26168401

RESUMEN

Activation of cellular stress response pathways to maintain metabolic homeostasis is emerging as a critical growth and survival mechanism in many cancers. The pathogenesis of pancreatic ductal adenocarcinoma (PDA) requires high levels of autophagy, a conserved self-degradative process. However, the regulatory circuits that activate autophagy and reprogram PDA cell metabolism are unknown. Here we show that autophagy induction in PDA occurs as part of a broader transcriptional program that coordinates activation of lysosome biogenesis and function, and nutrient scavenging, mediated by the MiT/TFE family of transcription factors. In human PDA cells, the MiT/TFE proteins--MITF, TFE3 and TFEB--are decoupled from regulatory mechanisms that control their cytoplasmic retention. Increased nuclear import in turn drives the expression of a coherent network of genes that induce high levels of lysosomal catabolic function essential for PDA growth. Unbiased global metabolite profiling reveals that MiT/TFE-dependent autophagy-lysosome activation is specifically required to maintain intracellular amino acid pools. These results identify the MiT/TFE proteins as master regulators of metabolic reprogramming in pancreatic cancer and demonstrate that transcriptional activation of clearance pathways converging on the lysosome is a novel hallmark of aggressive malignancy.


Asunto(s)
Autofagia/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Regulación Neoplásica de la Expresión Génica , Lisosomas/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Factores de Transcripción/metabolismo , Transporte Activo de Núcleo Celular , Aminoácidos/metabolismo , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Metabolismo Energético , Femenino , Xenoinjertos , Homeostasis , Humanos , Lisosomas/genética , Ratones , Factor de Transcripción Asociado a Microftalmía/metabolismo , Trasplante de Neoplasias , Neoplasias Pancreáticas/genética , Transcripción Genética
2.
Acta Crystallogr Sect E Struct Rep Online ; 69(Pt 3): o419-20, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23476594

RESUMEN

The asymmetric unit of the title compound, C28H38N4O8·C2H6OS, contains one tetra-peptide and one disordered dimethyl sulfoxide (DMSO) mol-ecule. The central five-membered ring (Pro(2)) of the peptide mol-ecule has a disordered envelope conformation [occupancy ratio 0.879 (2):0.121 (2)] with the envelope flap atom, the central C atom of the three ring methylene groups, lying on alternate sides of the mean ring plane. The terminal five-membered ring (Pro(4)) also adopts an envelope conformation with the C atom of the methylene group closest to the carboxylic acid function as the envelope flap, and the six-membered tetra-hydro-pyrane ring shows a chair conformation. The tetra-peptide exists in a helical conformation, stabilized by an intra-molecular hydrogen bond between the amide N-H group of the heterocyclic α-amino acid Thp and the amide O atom of the 4-meth-oxy-benzoyl group. This inter-action has a graph set motif of S(10) and serves to maintain a fairly rigid ß-turn structure. In the crystal, the terminal hy-droxy group forms a hydrogen bond with the amide O atom of Thp of a neighbouring mol-ecule, and the amide N-H group at the opposite end of the mol-ecule forms a hydrogen bond with the amide O atom of Thp of another neighbouring mol-ecule. The combination of both inter-molecular inter-actions links the mol-ecules into an extended three-dimensional framework.

3.
J Biol Chem ; 286(38): 33061-9, 2011 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-21757686

RESUMEN

Sustained expression of the histone demethylase, KDM2B (Ndy1/FBXL10/JHDM1B), bypasses cellular senescence in primary mouse embryonic fibroblasts (MEFs). Here, we show that KDM2B is a conserved regulator of lifespan in multiple primary cell types and defines a program in which this chromatin-modifying enzyme counteracts the senescence-associated down-regulation of the EZH2 histone methyltransferase. Senescence in MEFs epigenetically silences KDM2B and induces the tumor suppressor miRNAs let-7b and miR-101, which target EZH2. Forced expression of KDM2B promotes immortalization by silencing these miRNAs through locus-specific histone H3 K36me2 demethylation, leading to EZH2 up-regulation. Overexpression of let-7b down-regulates EZH2, induces premature senescence, and counteracts immortalization of MEFs driven by KDM2B. The KDM2B-let-7-EZH2 pathway also contributes to the proliferation of immortal Ink4a/Arf null fibroblasts suggesting that, beyond its anti-senescence role in primary cells, this histone-modifying enzyme functions more broadly in the regulation of cellular proliferation.


Asunto(s)
Ciclo Celular , Senescencia Celular , Proteínas F-Box/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Lisina/metabolismo , MicroARNs/metabolismo , Transducción de Señal , Factores de Ribosilacion-ADP/metabolismo , Animales , Proliferación Celular , Células Cultivadas , Secuencia Conservada/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/deficiencia , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Proteína Potenciadora del Homólogo Zeste 2 , Epigénesis Genética , Fibroblastos/citología , Fibroblastos/metabolismo , Ratones , Ratones Endogámicos C57BL , Complejo Represivo Polycomb 2 , Especificidad por Sustrato , Regulación hacia Arriba/genética
4.
J Clin Invest ; 123(2): 727-39, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23321669

RESUMEN

Epigenetic mechanisms mediate heritable control of cell identity in normal cells and cancer. We sought to identify epigenetic regulators driving the pathogenesis of pancreatic ductal adenocarcinoma (PDAC), one of the most lethal human cancers. We found that KDM2B (also known as Ndy1, FBXL10, and JHDM1B), an H3K36 histone demethylase implicated in bypass of cellular senescence and somatic cell reprogramming, is markedly overexpressed in human PDAC, with levels increasing with disease grade and stage, and highest expression in metastases. KDM2B silencing abrogated tumorigenicity of PDAC cell lines exhibiting loss of epithelial differentiation, whereas KDM2B overexpression cooperated with KrasG12D to promote PDAC formation in mouse models. Gain- and loss-of-function experiments coupled to genome-wide gene expression and ChIP studies revealed that KDM2B drives tumorigenicity through 2 different transcriptional mechanisms. KDM2B repressed developmental genes through cobinding with Polycomb group (PcG) proteins at transcriptional start sites, whereas it activated a module of metabolic genes, including mediators of protein synthesis and mitochondrial function, cobound by the MYC oncogene and the histone demethylase KDM5A. These results defined epigenetic programs through which KDM2B subverts cellular differentiation and drives the pathogenesis of an aggressive subset of PDAC.


Asunto(s)
Carcinoma Ductal Pancreático/etiología , Proteínas F-Box/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Oxidorreductasas N-Desmetilantes/metabolismo , Neoplasias Pancreáticas/etiología , Proteínas del Grupo Polycomb/metabolismo , Animales , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Epigénesis Genética , Proteínas F-Box/genética , Humanos , Histona Demetilasas con Dominio de Jumonji/genética , Ratones , Ratones SCID , Oxidorreductasas N-Desmetilantes/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Proteínas del Grupo Polycomb/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transcripción Genética , Regulación hacia Arriba
5.
Dev Cell ; 20(5): 583-596, 2011 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-21571217

RESUMEN

WTX is an X-linked tumor suppressor targeted by somatic mutations in Wilms tumor, a pediatric kidney cancer, and by germline inactivation in osteopathia striata with cranial sclerosis, a bone overgrowth syndrome. Here, we show that Wtx deletion in mice causes neonatal lethality, somatic overgrowth, and malformation of multiple mesenchyme-derived tissues, including bone, fat, kidney, heart, and spleen. Inactivation of Wtx at different developmental stages and in primary mesenchymal progenitor cells (MPCs) reveals that bone mass increase and adipose tissue deficiency are due to altered lineage fate decisions coupled with delayed terminal differentiation. Specification defects in MPCs result from aberrant ß-catenin activation, whereas alternative pathways contribute to the subsequently delayed differentiation of lineage-restricted cells. Thus, Wtx is a regulator of MPC commitment and differentiation with stage-specific functions in inhibiting canonical Wnt signaling. Furthermore, the constellation of anomalies in Wtx null mice suggests that this tumor suppressor broadly regulates MPCs in multiple tissues.


Asunto(s)
Células Madre Mesenquimatosas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Células Madre Mesenquimatosas/patología , Ratones , Ratones Noqueados , Transducción de Señal , Proteínas Supresoras de Tumor/deficiencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA