Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Genomics ; 23(1): 608, 2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-35987630

RESUMEN

BACKGROUND: Functional genomics uses unbiased systematic genome-wide gene disruption or analyzes natural variations such as gene expression profiles of different tissues from multicellular organisms to link gene functions to particular phenotypes. Functional genomics approaches are of particular importance to identify large sets of genes that are specifically important for a particular biological process beyond known candidate genes, or when the process has not been studied with genetic methods before. RESULTS: Here, we present a large set of genes whose disruption interferes with the function of the odoriferous defensive stink glands of the red flour beetle Tribolium castaneum. This gene set is the result of a large-scale systematic phenotypic screen using RNA interference applied in a genome-wide forward genetics manner. In this first-pass screen, 130 genes were identified, of which 69 genes could be confirmed to cause phenotypic changes in the glands upon knock-down, which vary from necrotic tissue and irregular reservoir size to irregular color or separation of the secreted gland compounds. Gene ontology analysis revealed that many of those genes are encoding enzymes (peptidases and cytochromes P450) as well as proteins involved in membrane trafficking with an enrichment in lysosome and mineral absorption pathways. The knock-down of 13 genes caused specifically a strong reduction of para-benzoquinones in the gland reservoirs, suggesting a specific function in the synthesis of these toxic compounds. Only 14 of the 69 confirmed gland genes are differentially overexpressed in stink gland tissue and thus could have been detected in a transcriptome-based analysis. However, only one out of eight genes identified by a transcriptomics approach known to cause phenotypic changes of the glands upon knock-down was recognized by this phenotypic screen, indicating the limitation of such a non-redundant first-pass screen. CONCLUSION: Our results indicate the importance of combining diverse and independent methodologies to identify genes necessary for the function of a certain biological tissue, as the different approaches do not deliver redundant results but rather complement each other. The presented phenotypic screen together with a transcriptomics approach are now providing a set of close to hundred genes important for odoriferous defensive stink gland physiology in beetles.


Asunto(s)
Escarabajos , Tribolium , Animales , Escarabajos/genética , Genómica , Fenotipo , Transcriptoma , Tribolium/genética
2.
Front Zool ; 14: 26, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28533810

RESUMEN

BACKGROUND: Stem cells are undifferentiated cells with a potential for self-renewal, which are essential to support normal development and homeostasis. To gain insight into the molecular mechanisms underlying adult stem cell biology and organ evolution, we use the telotrophic ovary of the beetle Tribolium. To this end, we participated in a large-scale RNAi screen in the red flour beetle Tribolium, which identified functions in embryonic and postembryonic development for more than half of the Tribolium genes. RESULTS: We identified TC003132 as candidate gene for the follicle stem cell linage in telotrophic Tribolium oogenesis. TC003132 belongs to the Casein Kinase 2 substrate family (CK2S), which in humans is associated with the proliferative activity of different cancers. Upon TC003132 RNAi, central pre-follicular cells are lost, which results in termination of oogenesis. Given that also Notch-signalling is required to promote the mitotic activity of central pre-follicular cells, we performed epistasis experiments with Notch and cut. In addition, we identified a putative follicle stem cell population by monitoring the mitotic pattern of wild type and TC003132 depleted follicle cells by EdU incorporations. In TC003132 RNAi these putative FSCs cease the expression of differentiation makers and are eventually lost. CONCLUSIONS: TC003132 depleted pre-follicular cells neither react to mitosis or endocycle stimulating signals, suggesting that TC003132 provides competence for differentiation cues. This may resemble the situation in C. elegans were CK2 is required to maintain the balance between proliferation and differentiation in the germ line. Since the earliest effect of TC003132 RNAi is characterized by the loss of putative FSCs, we posit that TC003132 crucially contributes to the proliferation or maintenance of follicle stem cells in the telotrophic Tribolium ovary.

3.
BMC Genomics ; 16: 674, 2015 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-26334912

RESUMEN

BACKGROUND: Insect pest control is challenged by insecticide resistance and negative impact on ecology and health. One promising pest specific alternative is the generation of transgenic plants, which express double stranded RNAs targeting essential genes of a pest species. Upon feeding, the dsRNA induces gene silencing in the pest resulting in its death. However, the identification of efficient RNAi target genes remains a major challenge as genomic tools and breeding capacity is limited in most pest insects impeding whole-animal-high-throughput-screening. RESULTS: We use the red flour beetle Tribolium castaneum as a screening platform in order to identify the most efficient RNAi target genes. From about 5,000 randomly screened genes of the iBeetle RNAi screen we identify 11 novel and highly efficient RNAi targets. Our data allowed us to determine GO term combinations that are predictive for efficient RNAi target genes with proteasomal genes being most predictive. Finally, we show that RNAi target genes do not appear to act synergistically and that protein sequence conservation does not correlate with the number of potential off target sites. CONCLUSIONS: Our results will aid the identification of RNAi target genes in many pest species by providing a manageable number of excellent candidate genes to be tested and the proteasome as prime target. Further, the identified GO term combinations will help to identify efficient target genes from organ specific transcriptomes. Our off target analysis is relevant for the sequence selection used in transgenic plants.


Asunto(s)
Genes de Insecto , Control Biológico de Vectores , Complejo de la Endopetidasa Proteasomal/metabolismo , Interferencia de ARN , Tribolium/genética , Animales , Secuencia de Bases , Análisis por Conglomerados , Secuencia Conservada , Ontología de Genes
4.
Front Zool ; 9(1): 15, 2012 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-22866820

RESUMEN

INTRODUCTION: Establishment of distinct follicle cell fates at the early stages of Drosophila oogenesis is crucial for achieving proper morphology of individual egg chambers. In Drosophila oogenesis, Notch-signaling controls proliferation and differentiation of follicular cells, which eventually results in the polarization of the anterior-posterior axis of the oocyte. Here we analyzed the functions of Tribolium Notch-signaling factors during telotrophic oogenesis, which differs fundamentally from the polytrophic ovary of Drosophila. RESULTS: We found Notch-signaling to be required for maintaining the mitotic cycle of somatic follicle cells. Upon Delta RNAi, follicle cells enter endocycle prematurely, which affects egg-chamber formation and patterning. Interestingly, our results indicate that Delta RNAi phenotypes are not solely due to the premature termination of cell proliferation. Therefore, we monitored the terminal/stalk cell precursor lineage by molecular markers. We observed that upon Delta RNAi terminal and stalk cell populations were absent, suggesting that Notch-signaling is also required for the specification of follicle cell populations, including terminal and stalk precursor cells. CONCLUSIONS: We demonstrate that with respect to mitotic cycle/endocycle switch Notch-signaling in Tribolium and Drosophila has opposing effects. While in Drosophila a Delta-signal brings about the follicle cells to leave mitosis, Notch-signaling in Triboliumis necessary to retain telotrophic egg-chambers in an "immature" state. In most instances, Notch-signaling is involved in maintaining undifferentiated (or preventing specialized) cell fates. Hence, the role of Notch in Tribolium may reflectthe ancestral function of Notch-signaling in insect oogenesis.The functions of Notch-signaling in patterning the follicle cell epithelium suggest that Tribolium oogenesis may - analogous to Drosophila - involve the stepwise determination of different follicle cell populations. Moreover, our results imply that Notch-signaling may contribute at least to some aspects of oocyte polarization and AP axis also in telotrophic oogenesis.

5.
G3 (Bethesda) ; 9(4): 1009-1026, 2019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30733381

RESUMEN

Although muscle development has been widely studied in Drosophila melanogaster there are still many gaps in our knowledge, and it is not known to which extent this knowledge can be transferred to other insects. To help in closing these gaps we participated in a large-scale RNAi screen that used the red flour beetle, Tribolium castaneum, as a screening platform. The effects of systemic RNAi were screened upon double-stranded RNA injections into appropriate muscle-EGFP tester strains. Injections into pupae were followed by the analysis of the late embryonic/early larval muscle patterns, and injections into larvae by the analysis of the adult thoracic muscle patterns. Herein we describe the results of the first-pass screens with pupal and larval injections, which covered ∼8,500 and ∼5,000 genes, respectively, of a total of ∼16,500 genes of the Tribolium genome. Apart from many genes known from Drosophila as regulators of muscle development, a collection of genes previously unconnected to muscle development yielded phenotypes in larval body wall and leg muscles as well as in indirect flight muscles. We then present the main candidates from the pupal injection screen that remained after being processed through a series of verification and selection steps. Further, we discuss why distinct though overlapping sets of genes are revealed by the Drosophila and Tribolium screening approaches.


Asunto(s)
Genes de Insecto , Desarrollo de Músculos/genética , Tribolium/genética , Animales , Clonación Molecular , Genoma de los Insectos , Interferencia de ARN , Tribolium/crecimiento & desarrollo
6.
Nat Commun ; 6: 7822, 2015 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-26215380

RESUMEN

Genetic screens are powerful tools to identify the genes required for a given biological process. However, for technical reasons, comprehensive screens have been restricted to very few model organisms. Therefore, although deep sequencing is revealing the genes of ever more insect species, the functional studies predominantly focus on candidate genes previously identified in Drosophila, which is biasing research towards conserved gene functions. RNAi screens in other organisms promise to reduce this bias. Here we present the results of the iBeetle screen, a large-scale, unbiased RNAi screen in the red flour beetle, Tribolium castaneum, which identifies gene functions in embryonic and postembryonic development, physiology and cell biology. The utility of Tribolium as a screening platform is demonstrated by the identification of genes involved in insect epithelial adhesion. This work transcends the restrictions of the candidate gene approach and opens fields of research not accessible in Drosophila.


Asunto(s)
Desarrollo Embrionario/genética , Proteínas de Insectos/genética , Metamorfosis Biológica/genética , Oogénesis/genética , Interferencia de ARN , Tribolium/genética , Animales , Escarabajos/embriología , Escarabajos/genética , Escarabajos/fisiología , Secuenciación de Nucleótidos de Alto Rendimiento , Larva/genética , Pupa/genética , Tribolium/embriología , Tribolium/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA