Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Plant Physiol ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709680

RESUMEN

Brassinosteroids (BR) and gibberellins (GA) regulate plant height and leaf angle in maize (Zea mays). Mutants with defects in BR or GA biosynthesis or signaling identify components of these pathways and enhance our knowledge about plant growth and development. In this study, we characterized three recessive mutant alleles of GRAS transcription factor 42 (gras42) in maize, a GRAS transcription factor gene orthologous to the DWARF AND LOW TILLERING (DLT) gene of rice (Oryza sativa). These maize mutants exhibited semi-dwarf stature, shorter and wider leaves, and more upright leaf angle. Transcriptome analysis revealed a role for GRAS42 as a determinant of BR signaling. Analysis of the expression consequences from loss of GRAS42 in the gras42-mu1021149 mutant indicated a weak loss of BR signaling in the mutant, consistent with its previously demonstrated role in BR signaling in rice. Loss of BR signaling was also evident by the enhancement of weak BR biosynthetic mutant alleles in double mutants of nana plant1-1 and gras42-mu1021149. The gras42-mu1021149 mutant had little effect on GA-regulated gene expression, suggesting that GRAS42 is not a regulator of core GA signaling genes in maize. Single cell expression data identified gras42 expressed among cells in the G2/M phase of the cell cycle consistent with its previously demonstrated role in cell cycle gene expression in Arabidopsis (Arabidopsis thaliana). Cis-acting natural variation controlling GRAS42 transcript accumulation was identified by expression genome-wide association study (eGWAS) in maize. Our results demonstrate a conserved role for GRAS42/SCARECROW-LIKE 28 (SCL28)/DLT in BR signaling, clarify the role of this gene in GA signaling, and suggest mechanisms of tillering and leaf angle control by BR.

2.
Plant Physiol ; 191(2): 1084-1101, 2023 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-36508348

RESUMEN

Grass inflorescences support floral structures that each bear a single grain, where variation in branch architecture directly impacts yield. The maize (Zea mays) RAMOSA1 (ZmRA1) transcription factor acts as a key regulator of inflorescence development by imposing branch meristem determinacy. Here, we show RA1 transcripts accumulate in boundary domains adjacent to spikelet meristems in sorghum (Sorghum bicolor, Sb) and green millet (Setaria viridis, Sv) inflorescences similar as in the developing maize tassel and ear. To evaluate the functional conservation of syntenic RA1 orthologs and promoter cis sequences in maize, sorghum, and setaria, we utilized interspecies gene transfer and assayed genetic complementation in a common inbred background by quantifying recovery of normal branching in highly ramified ra1-R mutants. A ZmRA1 transgene that includes endogenous upstream and downstream flanking sequences recovered normal tassel and ear branching in ra1-R. Interspecies expression of two transgene variants of the SbRA1 locus, modeled as the entire endogenous tandem duplication or just the nonframeshifted downstream copy, complemented ra1-R branching defects and induced unusual fasciation and branch patterns. The SvRA1 locus lacks conserved, upstream noncoding cis sequences found in maize and sorghum; interspecies expression of a SvRA1 transgene did not or only partially recovered normal inflorescence forms. Driving expression of the SvRA1 coding region by the ZmRA1 upstream region, however, recovered normal inflorescence morphology in ra1-R. These data leveraging interspecies gene transfer suggest that cis-encoded temporal regulation of RA1 expression is a key factor in modulating branch meristem determinacy that ultimately impacts grass inflorescence architecture.


Asunto(s)
Sorghum , Zea mays , Zea mays/metabolismo , Inflorescencia/genética , Inflorescencia/metabolismo , Proteínas de Plantas/metabolismo , Poaceae/genética , Factores de Transcripción/metabolismo , Sorghum/genética , Sorghum/metabolismo , Meristema/metabolismo
3.
Plant Physiol ; 188(2): 782-794, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34791481

RESUMEN

The plant shoot apex houses the shoot apical meristem, a highly organized and active stem-cell tissue where molecular signaling in discrete cells determines when and where leaves are initiated. We optimized a spatial transcriptomics approach, in situ sequencing (ISS), to colocalize the transcripts of 90 genes simultaneously on the same section of tissue from the maize (Zea mays) shoot apex. The RNA ISS technology reported expression profiles that were highly comparable with those obtained by in situ hybridizations (ISHs) and allowed the discrimination between tissue domains. Furthermore, the application of spatial transcriptomics to the shoot apex, which inherently comprised phytomers that are in gradual developmental stages, provided a spatiotemporal sequence of transcriptional events. We illustrate the power of the technology through PLASTOCHRON1 (PLA1), which was specifically expressed at the boundary between indeterminate and determinate cells and partially overlapped with ROUGH SHEATH1 and OUTER CELL LAYER4 transcripts. Also, in the inflorescence, PLA1 transcripts localized in cells subtending the lateral primordia or bordering the newly established meristematic region, suggesting a more general role of PLA1 in signaling between indeterminate and determinate cells during the formation of lateral organs. Spatial transcriptomics builds on RNA ISH, which assays relatively few transcripts at a time and provides a powerful complement to single-cell transcriptomics that inherently removes cells from their native spatial context. Further improvements in resolution and sensitivity will greatly advance research in plant developmental biology.


Asunto(s)
Células Vegetales , Proteínas de Plantas/química , Análisis de Secuencia de ARN/métodos , Zea mays/química , Expresión Génica , Proteínas de Plantas/genética , Análisis de Secuencia de ARN/instrumentación , Zea mays/genética
4.
Proc Natl Acad Sci U S A ; 117(52): 33689-33699, 2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33318187

RESUMEN

Plants maintain populations of pluripotent stem cells in shoot apical meristems (SAMs), which continuously produce new aboveground organs. We used single-cell RNA sequencing (scRNA-seq) to achieve an unbiased characterization of the transcriptional landscape of the maize shoot stem-cell niche and its differentiating cellular descendants. Stem cells housed in the SAM tip are engaged in genome integrity maintenance and exhibit a low rate of cell division, consistent with their contributions to germline and somatic cell fates. Surprisingly, we find no evidence for a canonical stem-cell organizing center subtending these cells. In addition, trajectory inference was used to trace the gene expression changes that accompany cell differentiation, revealing that ectopic expression of KNOTTED1 (KN1) accelerates cell differentiation and promotes development of the sheathing maize leaf base. These single-cell transcriptomic analyses of the shoot apex yield insight into the processes of stem-cell function and cell-fate acquisition in the maize seedling and provide a valuable scaffold on which to better dissect the genetic control of plant shoot morphogenesis at the cellular level.


Asunto(s)
Diferenciación Celular , Análisis de la Célula Individual , Células Madre/citología , Zea mays/citología , División Celular , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Meristema , Hojas de la Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcripción Genética , Transcriptoma/genética , Zea mays/genética
5.
Development ; 146(6)2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30858227

RESUMEN

Floral morphology is shaped by factors that modulate floral meristem activity and size, and the identity, number and arrangement of the lateral organs they form. We report here that the maize CRABS CLAW co-orthologs drooping leaf1 (drl1) and drl2 are required for development of ear and tassel florets. Pistillate florets of drl1 ears are sterile with unfused carpels that fail to enclose an expanded nucellus-like structure. Staminate florets of drl1 tassels have extra stamens and fertile anthers. Natural variation and transposon alleles of drl2 enhance drl1 mutant phenotypes by reducing floral meristem (FM) determinacy. The drl paralogs are co-expressed in lateral floral primordia, but not within the FM. drl expression together with the more indeterminate mutant FMs suggest that the drl genes regulate FM activity and impose meristem determinacy non-cell-autonomously from differentiating cells in lateral floral organs. We used gene regulatory network inference, genetic interaction and expression analyses to suggest that DRL1 and ZAG1 target each other and a common set of downstream genes that function during floret development, thus defining a regulatory module that fine-tunes floret patterning and FM determinacy.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Zea mays/genética , Alelos , Elementos Transponibles de ADN , Flores/crecimiento & desarrollo , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Inflorescencia/crecimiento & desarrollo , Meristema/crecimiento & desarrollo , Mutación , Fenotipo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Zea mays/crecimiento & desarrollo
6.
New Phytol ; 230(1): 218-227, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33280125

RESUMEN

The formation of developmental boundaries is a common feature of multicellular plants and animals, and impacts the initiation, structure and function of all organs. Maize leaves comprise a proximal sheath that encloses the stem, and a distal photosynthetic blade that projects away from the plant axis. An epidermally derived ligule and a joint-like auricle develop at the blade/sheath boundary of maize leaves. Mutations disturbing the ligule/auricle region disrupt leaf patterning and impact plant architecture, yet it is unclear how this developmental boundary is established. Targeted microdissection followed by transcriptomic analyses of young leaf primordia were utilized to construct a co-expression network associated with development of the blade/sheath boundary. Evidence is presented for proximodistal gradients of gene expression that establish a prepatterned transcriptomic boundary in young leaf primordia, before the morphological initiation of the blade/sheath boundary in older leaves. This work presents a conceptual model for spatiotemporal patterning of proximodistal leaf domains, and provides a rich resource of candidate gene interactions for future investigations of the mechanisms of blade/sheath boundary formation in maize.


Asunto(s)
Transcriptoma , Zea mays , Biología Computacional , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma/genética , Zea mays/genética , Zea mays/metabolismo
7.
New Phytol ; 229(1): 388-402, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32738820

RESUMEN

All aerial epidermal cells in land plants are covered by the cuticle, an extracellular hydrophobic layer that provides protection against abiotic and biotic stresses and prevents organ fusion during development. Genetic and morphological analysis of the classic maize adherent1 (ad1) mutant was combined with genome-wide binding analysis of the maize MYB transcription factor FUSED LEAVES1 (FDL1), coupled with transcriptional profiling of fdl1 mutants. We show that AD1 encodes an epidermally-expressed 3-KETOACYL-CoA SYNTHASE (KCS) belonging to a functionally uncharacterized clade of KCS enzymes involved in cuticular wax biosynthesis. Wax analysis in ad1 mutants indicates that AD1 functions in the formation of very-long-chain wax components. We demonstrate that FDL1 directly binds to CCAACC core motifs present in AD1 regulatory regions to activate its expression. Over 2000 additional target genes of FDL1, including many involved in cuticle formation, drought response and cell wall organization, were also identified. Our results identify a regulatory module of cuticle biosynthesis in maize that is conserved across monocots and eudicots, and highlight previously undescribed factors in lipid metabolism, transport and signaling that coordinate organ development and cuticle formation.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Zea mays , Epidermis de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ceras , Zea mays/genética , Zea mays/metabolismo
8.
Mol Breed ; 41(3): 19, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37309417

RESUMEN

More than 1.1 billion tonnes of maize grain were harvested across 197 million hectares in 2019 (FAOSTAT 2020). The vast global productivity of maize is largely driven by denser planting practices, higher yield potential per area of land, and increased yield potential per plant. Shoot architecture, the three-dimensional structural arrangement of the above-ground plant body, is critical to maize grain yield and biomass. Structure of the shoot is integral to all aspects of modern agronomic practices. Here, the developmental genetics of the maize vegetative shoot is reviewed. Plant architecture is ultimately determined by meristem activity, developmental patterning, and growth. The following topics are discussed: shoot apical meristem, leaf architecture, axillary meristem and shoot branching, and intercalary meristem and stem activity. Where possible, classical and current studies in maize developmental genetics, as well as recent advances leveraged by "-omics" analyses, are highlighted within these sections. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-021-01208-1.

9.
Plant Cell ; 29(7): 1622-1641, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28698237

RESUMEN

Leaf architecture directly influences canopy structure, consequentially affecting yield. We discovered a maize (Zea mays) mutant with aberrant leaf architecture, which we named drooping leaf1 (drl1). Pleiotropic mutations in drl1 affect leaf length and width, leaf angle, and internode length and diameter. These phenotypes are enhanced by natural variation at the drl2 enhancer locus, including reduced expression of the drl2-Mo17 allele in the Mo17 inbred. A second drl2 allele, produced by transposon mutagenesis, interacted synergistically with drl1 mutants and reduced drl2 transcript levels. The drl genes are required for proper leaf patterning, development and cell proliferation of leaf support tissues, and for restricting auricle expansion at the midrib. The paralogous loci encode maize CRABS CLAW co-orthologs in the YABBY family of transcriptional regulators. The drl genes are coexpressed in incipient and emergent leaf primordia at the shoot apex, but not in the vegetative meristem or stem. Genome-wide association studies using maize NAM-RIL (nested association mapping-recombinant inbred line) populations indicated that the drl loci reside within quantitative trait locus regions for leaf angle, leaf width, and internode length and identified rare single nucleotide polymorphisms with large phenotypic effects for the latter two traits. This study demonstrates that drl genes control the development of key agronomic traits in maize.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Zea mays/fisiología , Secuencia de Bases , Secuencia Conservada , Estudio de Asociación del Genoma Completo , Meristema/genética , Familia de Multigenes , Mutación , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Proteínas de Plantas/metabolismo , Tallos de la Planta/genética , Tallos de la Planta/fisiología , Sitios de Carácter Cuantitativo , Zea mays/genética
10.
New Phytol ; 221(2): 706-724, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30106472

RESUMEN

Contents Summary 706 I. Introduction 707 II. Leaf zones in monocot and eudicot leaves 707 III. Monocot and eudicot leaf initiation: differences in degree and timing, but not kind 710 IV. Reticulate and parallel venation: extending the model? 711 V. Flat laminar growth: patterning and coordination of adaxial-abaxial and mediolateral axes 713 VI. Stipules and ligules: ontogeny of primordial elaborations 715 VII. Leaf architecture 716 VIII. Stomatal development: shared and diverged mechanisms for making epidermal pores 717 IX. Conclusion 719 Acknowledgements 720 References 720 SUMMARY: Comparisons of concepts in monocot and eudicot leaf development are presented, with attention to the morphologies and mechanisms separating these angiosperm lineages. Monocot and eudicot leaves are distinguished by the differential elaborations of upper and lower leaf zones, the formation of sheathing/nonsheathing leaf bases and vasculature patterning. We propose that monocot and eudicot leaves undergo expansion of mediolateral domains at different times in ontogeny, directly impacting features such as venation and leaf bases. Furthermore, lineage-specific mechanisms in compound leaf development are discussed. Although models for the homologies of enigmatic tissues, such as ligules and stipules, are proposed, tests of these hypotheses are rare. Likewise, comparisons of stomatal development are limited to Arabidopsis and a few grasses. Future studies may investigate correlations in the ontogenies of parallel venation and linear stomatal files in monocots, and the reticulate patterning of veins and dispersed stoma in eudicots. Although many fundamental mechanisms of leaf development are shared in eudicots and monocots, variations in the timing, degree and duration of these ontogenetic events may contribute to key differences in morphology. We anticipate that the incorporation of an ever-expanding number of sequenced genomes will enrich our understanding of the developmental mechanisms generating eudicot and monocot leaves.


Asunto(s)
Hojas de la Planta/crecimiento & desarrollo , Tipificación del Cuerpo , Modelos Biológicos , Hojas de la Planta/anatomía & histología , Proteínas de Plantas/metabolismo , Estomas de Plantas/crecimiento & desarrollo , Haz Vascular de Plantas/crecimiento & desarrollo
13.
17.
18.
Plant Physiol ; 159(4): 1453-62, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22669891

RESUMEN

The maize (Zea mays) gene RAGGED SEEDLING2-R (RGD2-R) encodes an ARGONAUTE7-like protein required for the biogenesis of trans-acting small interfering RNA, which regulates the accumulation of AUXIN RESPONSE FACTOR3A transcripts in shoots. Although dorsiventral polarity is established in the narrow and cylindrical leaves of rgd2-R mutant plants, swapping of adaxial/abaxial epidermal identity occurs and suggests a model wherein RGD2 is required to coordinate dorsiventral and mediolateral patterning in maize leaves. Laser microdissection-microarray analyses of the rgd2-R mutant shoot apical meristem identified a novel gene, PUNCTATE VASCULAR EXPRESSION1 (PVE1), that is down-regulated in rgd2-R mutant apices. Transcripts of PVE1 provide an early molecular marker for vascular morphogenesis. Reverse genetic analyses suggest that PVE1 functions during vascular development and in mediolateral and dorsiventral patterning of maize leaves. Molecular genetic analyses of PVE1 and of rgd2-R;pve1-M2 double mutants suggest a model wherein PVE1 functions downstream of RGD2 in a pathway that intersects and interacts with the trans-acting small interfering RNA pathway.


Asunto(s)
Tipificación del Cuerpo/genética , Genes de Plantas/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/genética , Proteínas de Plantas/genética , ARN Interferente Pequeño/metabolismo , Zea mays/genética , Alelos , Regulación hacia Abajo/genética , Regulación de la Expresión Génica de las Plantas , Hibridación in Situ , Captura por Microdisección con Láser , Meristema/genética , Modelos Biológicos , Mutación/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Proteínas de Plantas/metabolismo , Haz Vascular de Plantas/anatomía & histología , Haz Vascular de Plantas/citología , Haz Vascular de Plantas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Genética Inversa , Transducción de Señal/genética
19.
Front Plant Sci ; 14: 1253640, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37780496

RESUMEN

Allotopic expression is the term given for the deliberate relocation of gene function from an organellar genome to the nuclear genome. We hypothesized that the allotopic expression of an essential mitochondrial gene using a promoter that expressed efficiently in all cell types except those responsible for male reproduction would yield a cytoplasmic male sterility (CMS) phenotype once the endogenous mitochondrial gene was inactivated via genome editing. To test this, we repurposed the mitochondrially encoded atp1 gene of tobacco to function in the nucleus under the transcriptional control of a CaMV 35S promoter (construct 35S:nATP1), a promoter that has been shown to be minimally expressed in early stages of anther development. The endogenous atp1 gene was eliminated (Δatp1) from 35S:nATP1 tobacco plants using custom-designed meganucleases directed to the mitochondria. Vegetative growth of most 35S:nATP1/Δatp1 plants appeared normal, but upon flowering produced malformed anthers that failed to shed pollen. When 35S:nATP1/Δatp1 plants were cross-pollinated, ovary/capsule development appeared normal, but the vast majority of the resultant seeds were small, largely hollow and failed to germinate, a phenotype akin to the seedless trait known as stenospermocarpy. Characterization of the mitochondrial genomes from three independent Δatp1 events suggested that spontaneous recombination over regions of microhomology and substoichiometric shifting were the mechanisms responsible for atp1 elimination and genome rearrangement in response to exposure to the atp1-targeting meganucleases. Should the results reported here in tobacco prove to be translatable to other crop species, then multiple applications of allotopic expression of an essential mitochondrial gene followed by its elimination through genome editing can be envisaged. Depending on the promoter(s) used to drive the allotopic gene, this technology may have potential application in the areas of: (1) CMS trait development for use in hybrid seed production; (2) seedless fruit production; and (3) transgene containment.

20.
PLoS Genet ; 5(5): e1000476, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19424435

RESUMEN

The shoot apical meristem (SAM) maintains a pool of indeterminate cells within the SAM proper, while lateral organs are initiated from the SAM periphery. Laser microdissection-microarray technology was used to compare transcriptional profiles within these SAM domains to identify novel maize genes that function during leaf development. Nine hundred and sixty-two differentially expressed maize genes were detected; control genes known to be upregulated in the initiating leaf (P0/P1) or in the SAM proper verified the precision of the microdissections. Genes involved in cell division/growth, cell wall biosynthesis, chromatin remodeling, RNA binding, and translation are especially upregulated in initiating leaves, whereas genes functioning during protein fate and DNA repair are more abundant in the SAM proper. In situ hybridization analyses confirmed the expression patterns of six previously uncharacterized maize genes upregulated in the P0/P1. P0/P1-upregulated genes that were also shown to be downregulated in leaf-arrested shoots treated with an auxin transport inhibitor are especially implicated to function during early events in maize leaf initiation. Reverse genetic analyses of asceapen1 (asc1), a maize D4-cyclin gene upregulated in the P0/P1, revealed novel leaf phenotypes, less genetic redundancy, and expanded D4-CYCLIN function during maize shoot development as compared to Arabidopsis. These analyses generated a unique SAM domain-specific database that provides new insight into SAM function and a useful platform for reverse genetic analyses of shoot development in maize.


Asunto(s)
Genes de Plantas , Meristema/crecimiento & desarrollo , Meristema/genética , Zea mays/crecimiento & desarrollo , Zea mays/genética , Secuencia de Aminoácidos , Arabidopsis/genética , Secuencia de Bases , Ciclina D , Ciclinas/genética , ADN de Plantas/genética , Bases de Datos Genéticas , Evolución Molecular , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Hibridación in Situ , Meristema/metabolismo , Microdisección , Datos de Secuencia Molecular , Familia de Multigenes , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Especificidad de la Especie , Zea mays/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA