Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Cell ; 178(3): 748-761.e17, 2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31280962

RESUMEN

Directed evolution, artificial selection toward designed objectives, is routinely used to develop new molecular tools and therapeutics. Successful directed molecular evolution campaigns repeatedly test diverse sequences with a designed selective pressure. Unicellular organisms and their viral pathogens are exceptional for this purpose and have been used for decades. However, many desirable targets of directed evolution perform poorly or unnaturally in unicellular backgrounds. Here, we present a system for facile directed evolution in mammalian cells. Using the RNA alphavirus Sindbis as a vector for heredity and diversity, we achieved 24-h selection cycles surpassing 10-3 mutations per base. Selection is achieved through genetically actuated sequences internal to the host cell, thus the system's name: viral evolution of genetically actuating sequences, or "VEGAS." Using VEGAS, we evolve transcription factors, GPCRs, and allosteric nanobodies toward functional signaling endpoints each in less than 1 weeks' time.


Asunto(s)
Evolución Molecular Dirigida/métodos , Regulación Alostérica , Secuencia de Aminoácidos , Animales , Transferencia Resonante de Energía de Fluorescencia , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Células HEK293 , Humanos , Mutación , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Alineación de Secuencia , Virus Sindbis/genética , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/genética , Anticuerpos de Dominio Único/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Cell ; 179(4): 895-908.e21, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31675498

RESUMEN

The peptidergic system is the most abundant network of ligand-receptor-mediated signaling in humans. However, the physiological roles remain elusive for numerous peptides and more than 100 G protein-coupled receptors (GPCRs). Here we report the pairing of cognate peptides and receptors. Integrating comparative genomics across 313 species and bioinformatics on all protein sequences and structures of human class A GPCRs, we identify universal characteristics that uncover additional potential peptidergic signaling systems. Using three orthogonal biochemical assays, we pair 17 proposed endogenous ligands with five orphan GPCRs that are associated with diseases, including genetic, neoplastic, nervous and reproductive system disorders. We also identify additional peptides for nine receptors with recognized ligands and pathophysiological roles. This integrated computational and multifaceted experimental approach expands the peptide-GPCR network and opens the way for studies to elucidate the roles of these signaling systems in human physiology and disease. VIDEO ABSTRACT.


Asunto(s)
Genómica , Péptidos/genética , Conformación Proteica , Receptores Acoplados a Proteínas G/genética , Secuencia de Aminoácidos/genética , Biología Computacional , Redes Reguladoras de Genes/genética , Genitales/metabolismo , Genitales/patología , Humanos , Ligandos , Neoplasias/genética , Neoplasias/patología , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/patología , Transducción de Señal/genética
3.
Cell ; 172(1-2): 55-67.e15, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29307491

RESUMEN

The κ-opioid receptor (KOP) mediates the actions of opioids with hallucinogenic, dysphoric, and analgesic activities. The design of KOP analgesics devoid of hallucinatory and dysphoric effects has been hindered by an incomplete structural and mechanistic understanding of KOP agonist actions. Here, we provide a crystal structure of human KOP in complex with the potent epoxymorphinan opioid agonist MP1104 and an active-state-stabilizing nanobody. Comparisons between inactive- and active-state opioid receptor structures reveal substantial conformational changes in the binding pocket and intracellular and extracellular regions. Extensive structural analysis and experimental validation illuminate key residues that propagate larger-scale structural rearrangements and transducer binding that, collectively, elucidate the structural determinants of KOP pharmacology, function, and biased signaling. These molecular insights promise to accelerate the structure-guided design of safer and more effective κ-opioid receptor therapeutics.


Asunto(s)
Simulación del Acoplamiento Molecular , Receptores Opioides kappa/química , Analgésicos/química , Analgésicos/farmacología , Animales , Sitios de Unión , Células HEK293 , Humanos , Simulación de Dinámica Molecular , Morfinanos/química , Morfinanos/farmacología , Unión Proteica , Estabilidad Proteica , Receptores Opioides kappa/agonistas , Receptores Opioides kappa/metabolismo , Células Sf9 , Spodoptera
4.
Cell ; 166(4): 907-919, 2016 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-27499021

RESUMEN

Classically, G protein-coupled receptor (GPCR) stimulation promotes G protein signaling at the plasma membrane, followed by rapid ß-arrestin-mediated desensitization and receptor internalization into endosomes. However, it has been demonstrated that some GPCRs activate G proteins from within internalized cellular compartments, resulting in sustained signaling. We have used a variety of biochemical, biophysical, and cell-based methods to demonstrate the existence, functionality, and architecture of internalized receptor complexes composed of a single GPCR, ß-arrestin, and G protein. These super-complexes or "megaplexes" more readily form at receptors that interact strongly with ß-arrestins via a C-terminal tail containing clusters of serine/threonine phosphorylation sites. Single-particle electron microscopy analysis of negative-stained purified megaplexes reveals that a single receptor simultaneously binds through its core region with G protein and through its phosphorylated C-terminal tail with ß-arrestin. The formation of such megaplexes provides a potential physical basis for the newly appreciated sustained G protein signaling from internalized GPCRs.


Asunto(s)
Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , beta-Arrestinas/metabolismo , Transferencia de Energía por Resonancia de Bioluminiscencia , AMP Cíclico/metabolismo , Endosomas/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Células HEK293 , Humanos , Microscopía Confocal , Microscopía Electrónica , Complejos Multiproteicos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/química , beta-Arrestinas/química
6.
Biochemistry ; 62(7): 1233-1248, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36917754

RESUMEN

The NTSR1 neurotensin receptor (NTSR1) is a G protein-coupled receptor (GPCR) found in the brain and peripheral tissues with neurotensin (NTS) being its endogenous peptide ligand. In the brain, NTS modulates dopamine neuronal activity, induces opioid-independent analgesia, and regulates food intake. Recent studies indicate that biasing NTSR1 toward ß-arrestin signaling can attenuate the actions of psychostimulants and other drugs of abuse. Here, we provide the cryoEM structures of NTSR1 ternary complexes with heterotrimeric Gq and GoA with and without the brain-penetrant small-molecule SBI-553. In functional studies, we discovered that SBI-553 displays complex allosteric actions exemplified by negative allosteric modulation for G proteins that are Gα subunit selective and positive allosteric modulation and agonism for ß-arrestin translocation at NTSR1. Detailed structural analysis of the allosteric binding site illuminated the structural determinants for biased allosteric modulation of SBI-553 on NTSR1.


Asunto(s)
Neurotensina , Receptores de Neurotensina , Receptores de Neurotensina/química , Receptores de Neurotensina/metabolismo , Neurotensina/metabolismo , Transducción de Señal , Péptidos/metabolismo , beta-Arrestinas/metabolismo
7.
Nat Chem Biol ; 16(8): 841-849, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32367019

RESUMEN

G-protein-coupled receptors (GPCRs) remain major drug targets, despite our incomplete understanding of how they signal through 16 non-visual G-protein signal transducers (collectively named the transducerome) to exert their actions. To address this gap, we have developed an open-source suite of 14 optimized bioluminescence resonance energy transfer (BRET) Gαßγ biosensors (named TRUPATH) to interrogate the transducerome with single pathway resolution in cells. Generated through exhaustive protein engineering and empirical testing, the TRUPATH suite of Gαßγ biosensors includes the first Gα15 and GαGustducin probes. In head-to-head studies, TRUPATH biosensors outperformed first-generation sensors at multiple GPCRs and in different cell lines. Benchmarking studies with TRUPATH biosensors recapitulated previously documented signaling bias and revealed new coupling preferences for prototypic and understudied GPCRs with potential in vivo relevance. To enable a greater understanding of GPCR molecular pharmacology by the scientific community, we have made TRUPATH biosensors easily accessible as a kit through Addgene.


Asunto(s)
Técnicas Biosensibles/instrumentación , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/fisiología , Técnicas Biosensibles/métodos , Proteínas de Unión al GTP/metabolismo , Células HEK293 , Humanos , Ingeniería de Proteínas/métodos , Transducción de Señal
8.
Nature ; 535(7612): 448-52, 2016 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-27409812

RESUMEN

G-protein-coupled receptors (GPCRs) modulate many physiological processes by transducing a variety of extracellular cues into intracellular responses. Ligand binding to an extracellular orthosteric pocket propagates conformational change to the receptor cytosolic region to promote binding and activation of downstream signalling effectors such as G proteins and ß-arrestins. It is well known that different agonists can share the same binding pocket but evoke unique receptor conformations leading to a wide range of downstream responses ('efficacy'). Furthermore, increasing biophysical evidence, primarily using the ß2-adrenergic receptor (ß2AR) as a model system, supports the existence of multiple active and inactive conformational states. However, how agonists with varying efficacy modulate these receptor states to initiate cellular responses is not well understood. Here we report stabilization of two distinct ß2AR conformations using single domain camelid antibodies (nanobodies)­a previously described positive allosteric nanobody (Nb80) and a newly identified negative allosteric nanobody (Nb60). We show that Nb60 stabilizes a previously unappreciated low-affinity receptor state which corresponds to one of two inactive receptor conformations as delineated by X-ray crystallography and NMR spectroscopy. We find that the agonist isoprenaline has a 15,000-fold higher affinity for ß2AR in the presence of Nb80 compared to the affinity of isoprenaline for ß2AR in the presence of Nb60, highlighting the full allosteric range of a GPCR. Assessing the binding of 17 ligands of varying efficacy to the ß2AR in the absence and presence of Nb60 or Nb80 reveals large ligand-specific effects that can only be explained using an allosteric model which assumes equilibrium amongst at least three receptor states. Agonists generally exert efficacy by stabilizing the active Nb80-stabilized receptor state (R80). In contrast, for a number of partial agonists, both stabilization of R80 and destabilization of the inactive, Nb60-bound state (R60) contribute to their ability to modulate receptor activation. These data demonstrate that ligands can initiate a wide range of cellular responses by differentially stabilizing multiple receptor states.


Asunto(s)
Agonistas de Receptores Adrenérgicos beta 2/farmacología , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , Anticuerpos de Dominio Único/farmacología , Regulación Alostérica/efectos de los fármacos , Sitio Alostérico/efectos de los fármacos , Cristalografía por Rayos X , Agonismo Parcial de Drogas , Humanos , Isoproterenol/farmacología , Ligandos , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos
9.
Proc Natl Acad Sci U S A ; 114(7): 1708-1713, 2017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28130548

RESUMEN

The ß2-adrenergic receptor (ß2AR) has been a model system for understanding regulatory mechanisms of G-protein-coupled receptor (GPCR) actions and plays a significant role in cardiovascular and pulmonary diseases. Because all known ß-adrenergic receptor drugs target the orthosteric binding site of the receptor, we set out to isolate allosteric ligands for this receptor by panning DNA-encoded small-molecule libraries comprising 190 million distinct compounds against purified human ß2AR. Here, we report the discovery of a small-molecule negative allosteric modulator (antagonist), compound 15 [([4-((2S)-3-(((S)-3-(3-bromophenyl)-1-(methylamino)-1-oxopropan-2-yl)amino)-2-(2-cyclohexyl-2-phenylacetamido)-3-oxopropyl)benzamide], exhibiting a unique chemotype and low micromolar affinity for the ß2AR. Binding of 15 to the receptor cooperatively enhances orthosteric inverse agonist binding while negatively modulating binding of orthosteric agonists. Studies with a specific antibody that binds to an intracellular region of the ß2AR suggest that 15 binds in proximity to the G-protein binding site on the cytosolic surface of the ß2AR. In cell-signaling studies, 15 inhibits cAMP production through the ß2AR, but not that mediated by other Gs-coupled receptors. Compound 15 also similarly inhibits ß-arrestin recruitment to the activated ß2AR. This study presents an allosteric small-molecule ligand for the ß2AR and introduces a broadly applicable method for screening DNA-encoded small-molecule libraries against purified GPCR targets. Importantly, such an approach could facilitate the discovery of GPCR drugs with tailored allosteric effects.


Asunto(s)
Antagonistas Adrenérgicos beta/farmacología , Ensayos Analíticos de Alto Rendimiento/métodos , Receptores Adrenérgicos beta 2/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Antagonistas Adrenérgicos beta/química , Antagonistas Adrenérgicos beta/metabolismo , Animales , Sitios de Unión/genética , Unión Competitiva/efectos de los fármacos , ADN/genética , Humanos , Ligandos , Estructura Molecular , Mutación , Receptores Adrenérgicos beta 2/genética , Células Sf9 , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismo , Spodoptera
10.
Nat Chem Biol ; 12(9): 709-16, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27398998

RESUMEN

G-protein-coupled receptor (GPCR) ligands function by stabilizing multiple, functionally distinct receptor conformations. This property underlies the ability of 'biased agonists' to activate specific subsets of a given receptor's signaling profile. However, stabilizing distinct active GPCR conformations to enable structural characterization of mechanisms underlying GPCR activation remains difficult. These challenges have accentuated the need for receptor tools that allosterically stabilize and regulate receptor function through unique, previously unappreciated mechanisms. Here, using a highly diverse RNA library combined with advanced selection strategies involving state-of-the-art next-generation sequencing and bioinformatics analyses, we identify RNA aptamers that bind a prototypical GPCR, the ß2-adrenoceptor (ß2AR). Using biochemical, pharmacological, and biophysical approaches, we demonstrate that these aptamers bind with nanomolar affinity at defined surfaces of the receptor, allosterically stabilizing active, inactive, and ligand-specific receptor conformations. The discovery of RNA aptamers as allosteric GPCR modulators significantly expands the diversity of ligands available to study the structural and functional regulation of GPCRs.


Asunto(s)
Aptámeros de Nucleótidos/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Regulación Alostérica/efectos de los fármacos , Aptámeros de Nucleótidos/química , Benzoxazinas/química , Benzoxazinas/farmacología , Humanos , Modelos Moleculares , Conformación Proteica , Receptores Adrenérgicos beta 2/química
11.
Nature ; 477(7364): 349-53, 2011 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-21857681

RESUMEN

The human mind and body respond to stress, a state of perceived threat to homeostasis, by activating the sympathetic nervous system and secreting the catecholamines adrenaline and noradrenaline in the 'fight-or-flight' response. The stress response is generally transient because its accompanying effects (for example, immunosuppression, growth inhibition and enhanced catabolism) can be harmful in the long term. When chronic, the stress response can be associated with disease symptoms such as peptic ulcers or cardiovascular disorders, and epidemiological studies strongly indicate that chronic stress leads to DNA damage. This stress-induced DNA damage may promote ageing, tumorigenesis, neuropsychiatric conditions and miscarriages. However, the mechanisms by which these DNA-damage events occur in response to stress are unknown. The stress hormone adrenaline stimulates ß(2)-adrenoreceptors that are expressed throughout the body, including in germline cells and zygotic embryos. Activated ß(2)-adrenoreceptors promote Gs-protein-dependent activation of protein kinase A (PKA), followed by the recruitment of ß-arrestins, which desensitize G-protein signalling and function as signal transducers in their own right. Here we elucidate a molecular mechanism by which ß-adrenergic catecholamines, acting through both Gs-PKA and ß-arrestin-mediated signalling pathways, trigger DNA damage and suppress p53 levels respectively, thus synergistically leading to the accumulation of DNA damage. In mice and in human cell lines, ß-arrestin-1 (ARRB1), activated via ß(2)-adrenoreceptors, facilitates AKT-mediated activation of MDM2 and also promotes MDM2 binding to, and degradation of, p53, by acting as a molecular scaffold. Catecholamine-induced DNA damage is abrogated in Arrb1-knockout (Arrb1(-/-)) mice, which show preserved p53 levels in both the thymus, an organ that responds prominently to acute or chronic stress, and in the testes, in which paternal stress may affect the offspring's genome. Our results highlight the emerging role of ARRB1 as an E3-ligase adaptor in the nucleus, and reveal how DNA damage may accumulate in response to chronic stress.


Asunto(s)
Arrestinas/metabolismo , Daño del ADN , Receptores Adrenérgicos beta 2/metabolismo , Estrés Fisiológico/fisiología , Animales , Arrestinas/deficiencia , Arrestinas/genética , Catecolaminas/farmacología , Línea Celular , Núcleo Celular/enzimología , Núcleo Celular/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Fibroblastos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Transducción de Señal/efectos de los fármacos , Testículo/metabolismo , Timo/metabolismo , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/metabolismo , beta-Arrestina 1 , beta-Arrestinas
12.
Circulation ; 131(24): 2120-30, 2015 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-25995315

RESUMEN

BACKGROUND: Whether biomechanical force on the heart can induce exosome secretion to modulate cardiovascular function is not known. We investigated the secretion and activity of exosomes containing a key receptor in cardiovascular function, the angiotensin II type I receptor (AT1R). METHODS AND RESULTS: Exosomes containing AT1Rs were isolated from the media overlying AT1R-overexpressing cells exposed to osmotic stretch and from sera of mice undergoing cardiac pressure overload. The presence of AT1Rs in exosomes was confirmed by both electron microscopy and radioligand receptor binding assays and shown to require ß-arrestin2, a multifunctional adaptor protein essential for receptor trafficking. We show that functional AT1Rs are transferred via exosomes in an in vitro model of cellular stretch. Using mice with global and cardiomyocyte conditional deletion of ß-arrestin2, we show that under conditions of in vivo pressure overload the cellular source of the exocytosis of exosomes containing AT1R is the cardiomyocyte. Exogenously administered AT1R-enriched exosomes target cardiomyocytes, skeletal myocytes, and mesenteric resistance vessels and are sufficient to confer blood pressure responsiveness to angiotensin II infusion in AT1R knockout mice. CONCLUSIONS: AT1R-enriched exosomes are released from the heart under conditions of in vivo cellular stress to likely modulate vascular responses to neurohormonal stimulation. In the context of the whole organism, the concept of G protein-coupled receptor trafficking should consider circulating exosomes as part of the reservoir of functional AT1Rs.


Asunto(s)
Exosomas/química , Miocitos Cardíacos/química , Receptor de Angiotensina Tipo 1/sangre , Estrés Mecánico , Animales , Arrestinas/deficiencia , Arrestinas/genética , Arrestinas/fisiología , Presión Sanguínea , Constricción , Exosomas/fisiología , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica , Células Musculares/metabolismo , Miocitos Cardíacos/ultraestructura , Presión Osmótica , Transporte de Proteínas , Interferencia de ARN , ARN Interferente Pequeño/farmacología , Ensayo de Unión Radioligante , Receptor de Angiotensina Tipo 1/deficiencia , Receptor de Angiotensina Tipo 1/genética , Resistencia Vascular , beta-Arrestinas
13.
J Biol Chem ; 289(41): 28271-83, 2014 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-25170081

RESUMEN

It has recently been appreciated that the angiotensin II type 1 receptor (AT1R), a prototypic member of the G protein-coupled receptor superfamily, also functions as a mechanosensor. Specifically, mechanical stretch activates the AT1R to promote downstream signaling mediated exclusively by the multifunctional scaffold protein, ß-arrestin, in a manner consistent with previously identified ß-arrestin-biased ligands. However, the ligand-independent mechanism by which mechanical stretch promotes ß-arrestin-biased signaling remains unknown. Implicit in the concept of biased agonism (i.e. the ability of an agonist to activate a subset of receptor-mediated signaling pathways) is the notion that distinct active conformations of the receptor mediate differential activation of signaling pathways. Here we determined whether mechanical stretch stabilizes distinct ß-arrestin-activating conformations of the AT1R by using ß-arrestin2-biased agonists as conformational probes in pharmacological and biophysical assays. When tested at cells expressing the AT1R fused to ß-arrestin (AT1R-ß-arrestin2), we found that osmotic stretch increased the binding affinity and potency of the ß-arrestin-biased agonist TRV120023, with no effect on the balanced agonist AngII. In addition, the effect of osmotic stretch on ERK activation was markedly augmented in cells expressing the AT1R-ß-arrestin2 fusion compared with the wild type AT1R and completely blocked in cells expressing the AT1R-Gq fusion. Biophysical experiments with an intramolecular BRET ß-arrestin2 biosensor revealed that osmotic stretch and TRV120023 activate AT1Rs to stabilize ß-arrestin2 active conformations that differ from those stabilized by the AT1R activated by angiotensin II. Together, these data support a novel ligand-independent mechanism whereby mechanical stretch allosterically stabilizes specific ß-arrestin-biased active conformations of the AT1R and has important implications for understanding pathophysiological AT1R signaling.


Asunto(s)
Angiotensina II/metabolismo , Arrestinas/metabolismo , Membrana Celular/metabolismo , Mecanotransducción Celular , Receptor de Angiotensina Tipo 1/agonistas , Proteínas Recombinantes de Fusión/metabolismo , Regulación Alostérica , Angiotensina II/química , Angiotensina II/genética , Arrestinas/genética , Fenómenos Biomecánicos , Técnicas Biosensibles , Membrana Celular/química , Quinasas MAP Reguladas por Señal Extracelular/química , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Humanos , Oligopéptidos/farmacología , Presión Osmótica , Receptor de Angiotensina Tipo 1/genética , Receptor de Angiotensina Tipo 1/metabolismo , Proteínas Recombinantes de Fusión/genética , beta-Arrestinas
14.
J Biol Chem ; 289(20): 14211-24, 2014 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-24668815

RESUMEN

The concept of "biased agonism" arises from the recognition that the ability of an agonist to induce a receptor-mediated response (i.e. "efficacy") can differ across the multiple signal transduction pathways (e.g. G protein and ß-arrestin (ßarr)) emanating from a single GPCR. Despite the therapeutic promise of biased agonism, the molecular mechanism(s) whereby biased agonists selectively engage signaling pathways remain elusive. This is due in large part to the challenges associated with quantifying ligand efficacy in cells. To address this, we developed a cell-free approach to directly quantify the transducer-specific molecular efficacies of balanced and biased ligands for the angiotensin II type 1 receptor (AT1R), a prototypic GPCR. Specifically, we defined efficacy in allosteric terms, equating shifts in ligand affinity (i.e. KLo/KHi) at AT1R-Gq and AT1R-ßarr2 fusion proteins with their respective molecular efficacies for activating Gq and ßarr2. Consistent with ternary complex model predictions, transducer-specific molecular efficacies were strongly correlated with cellular efficacies for activating Gq and ßarr2. Subsequent comparisons across transducers revealed that biased AT1R agonists possess biased molecular efficacies that were in strong agreement with the signaling bias observed in cellular assays. These findings not only represent the first measurements of the thermodynamic driving forces underlying differences in ligand efficacy between transducers but also support a molecular mechanism whereby divergent transducer-specific molecular efficacies generate biased agonism at a GPCR.


Asunto(s)
Receptor de Angiotensina Tipo 1/agonistas , Receptor de Angiotensina Tipo 1/metabolismo , Transducción de Señal , Regulación Alostérica , Células HEK293 , Humanos , Ligandos , Proteínas Recombinantes de Fusión/metabolismo , Termodinámica
15.
Mol Pharmacol ; 85(3): 472-81, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24319111

RESUMEN

The biologic activity induced by ligand binding to orthosteric or allosteric sites on a G protein-coupled receptor (GPCR) is mediated by stabilization of specific receptor conformations. In the case of the ß2 adrenergic receptor, these ligands are generally small-molecule agonists or antagonists. However, a monomeric single-domain antibody (nanobody) from the Camelid family was recently found to allosterically bind and stabilize an active conformation of the ß2-adrenergic receptor (ß2AR). Here, we set out to study the functional interaction of 18 related nanobodies with the ß2AR to investigate their roles as novel tools for studying GPCR biology. Our studies revealed several sequence-related nanobody families with preferences for active (agonist-occupied) or inactive (antagonist-occupied) receptors. Flow cytometry analysis indicates that all nanobodies bind to epitopes displayed on the intracellular receptor surface; therefore, we transiently expressed them intracellularly as "intrabodies" to test their effects on ß2AR-dependent signaling. Conformational specificity was preserved after intrabody conversion as demonstrated by the ability for the intracellularly expressed nanobodies to selectively bind agonist- or antagonist-occupied receptors. When expressed as intrabodies, they inhibited G protein activation (cyclic AMP accumulation), G protein-coupled receptor kinase (GRK)-mediated receptor phosphorylation, ß-arrestin recruitment, and receptor internalization to varying extents. These functional effects were likely due to either steric blockade of downstream effector (Gs, ß-arrestin, GRK) interactions or stabilization of specific receptor conformations which do not support effector coupling. Together, these findings strongly implicate nanobody-derived intrabodies as novel tools to study GPCR biology.


Asunto(s)
Receptores Adrenérgicos beta 2/metabolismo , Anticuerpos de Dominio Único/metabolismo , Secuencia de Aminoácidos , Línea Celular , AMP Cíclico/metabolismo , Quinasas de Receptores Acoplados a Proteína-G/metabolismo , Células HEK293 , Humanos , Datos de Secuencia Molecular , Fosforilación/fisiología , Unión Proteica/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Alineación de Secuencia
16.
Proc Natl Acad Sci U S A ; 106(46): 19575-80, 2009 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-19889983

RESUMEN

The 5-HT(2A) serotonin receptor is the most abundant serotonin receptor subtype in the cortex and is predominantly expressed in pyramidal neurons. The 5-HT(2A) receptor is a target of several hallucinogens, antipsychotics, anxiolytics, and antidepressants, and it has been associated with several psychiatric disorders, conditions that are also associated with aberrations in dendritic spine morphogenesis. However, the role of 5-HT(2A) receptors in regulating dendritic spine morphogenesis in cortical neurons is unknown. Here we show that the 5-HT(2A) receptor is present in a subset of spines, in addition to dendritic shafts. It colocalizes with PSD-95 and with multiple PDZ protein-1 (MUPP1) in a subset of dendritic spines of rat cortical pyramidal neurons. MUPP1 is enriched in postsynaptic density (PSD) fractions, is targeted to spines in pyramidal neurons, and enhances the localization of 5-HT(2A) receptors to the cell periphery. 5-HT(2A) receptor activation by the 5-HT(2) receptor agonist DOI induced a transient increase in dendritic spine size, as well as phosphorylation of p21-activated kinase (PAK) in cultured cortical neurons. PAK is a downstream target of the neuronal Rac guanine nucleotide exchange factor (RacGEF) kalirin-7 that is important for spine remodeling. Kalirin-7 regulates dendritic spine morphogenesis in neurons but its role in neuromodulator signaling has not been investigated. We show that peptide interference that prevents the localization of kalirin-7 to the postsynaptic density disrupts DOI-induced PAK phosphorylation and spine morphogenesis. These results suggest a potential role for serotonin signaling in modulating spine morphology and kalirin-7's function at cortical synapses.


Asunto(s)
Dendritas/fisiología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Células Piramidales/metabolismo , Receptor de Serotonina 5-HT2A/metabolismo , Columna Vertebral/crecimiento & desarrollo , Sinapsis/metabolismo , Animales , Proteínas Portadoras/metabolismo , Dendritas/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Morfogénesis , Plasticidad Neuronal , Ratas , Ratas Sprague-Dawley , Columna Vertebral/citología , Columna Vertebral/metabolismo
17.
J Med Chem ; 65(5): 4201-4217, 2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35195401

RESUMEN

The 5-HT5A receptor (5-HT5AR), for which no selective agonists and a few antagonists exist, remains the least understood serotonin receptor. A single commercial antagonist, SB-699551, has been widely used to investigate the 5-HT5AR function in neurological disorders, including pain, but this molecule has substantial liabilities as a chemical probe. Accordingly, we sought to develop an internally controlled probe set. Docking over 6 million molecules against a 5-HT5AR homology model identified 5 mid-µM ligands, one of which was optimized to UCSF678, a 42 nM arrestin-biased partial agonist at the 5-HT5AR with a more restricted off-target profile and decreased assay liabilities versus SB-699551. Site-directed mutagenesis supported the docked pose of UCSF678. Surprisingly, analogs of UCSF678 that lost the 5-HT5AR activity revealed that 5-HT5AR engagement is nonessential for alleviating pain, contrary to studies with less-selective ligands. UCSF678 and analogs constitute a selective probe set with which to study the function of the 5-HT5AR.


Asunto(s)
Antagonistas de la Serotonina , Serotonina , Humanos , Ligandos , Dolor , Receptores de Serotonina , Antagonistas de la Serotonina/farmacología
18.
Biochemistry ; 49(12): 2657-71, 2010 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-20136148

RESUMEN

The 5-hydroxytryptamine 2A (5-HT(2A)) receptor is a member of the G protein-coupled receptor superfamily (GPCR) and plays a key role in transducing a variety of cellular signals elicited by serotonin (5-HT; 5-hydroxytryptamine) in both peripheral and central tissues. Recently, we discovered that the ERK/MAPK effector p90 ribosomal S6 kinase 2 (RSK2) phosphorylates the 5-HT(2A) receptor and attenuates 5-HT(2A) receptor signaling. This raised the intriguing possibility of a regulatory paradigm whereby receptor tyrosine kinases (RTKs) attenuate GPCR signaling (i.e., "inhibitory cross-talk") by activating RSK2 [Strachan et al. (2009) J. Biol. Chem. 284, 5557-5573]. We report here that activation of multiple endogenous RTKs such as the epidermal growth factor receptor (EGFR), the platelet-derived growth factor receptor (PDGFR), and ErbB4 significantly attenuates 5-HT(2A) receptor signaling in a variety of cell types including mouse embryonic fibroblasts (MEFs), mouse vascular smooth muscle cells (mVSMCs), and primary cortical neurons. Importantly, genetic deletion of RSK2 completely prevented signal attenuation, thereby suggesting that RSK2 is a critical mediator of inhibitory cross-talk between RTKs and 5-HT(2A) receptors. We also discovered that P2Y purinergic receptor signaling was similarly attenuated following EGFR activation. By directly testing multiple endogenous growth factors/RTK pathways and multiple Gq-coupled GPCRs, we have now established a cellular mechanism whereby RTK signaling cascades act via RSK2 to attenuate GPCR signaling. Given the pervasiveness of growth factor signaling, this novel regulatory mechanism has the potential to explain how 5-HT(2A) receptors are regulated in vivo, with potential implications for human diseases in which 5-HT(2A) or RTK activity is altered (e.g., neuropsychiatric and neurodevelopmental disorders).


Asunto(s)
Receptores ErbB/metabolismo , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptores Acoplados a Proteínas G/fisiología , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Transducción de Señal/fisiología , Animales , Antígenos CD/inmunología , Supervivencia Celular , Células Cultivadas , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Ratones , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos , Neuronas/efectos de los fármacos , Neuronas/fisiología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptor de Serotonina 5-HT2A/metabolismo , Receptores del Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptores de Transferrina/inmunología , Serotonina/metabolismo , Transducción de Señal/efectos de los fármacos
19.
Mol Pharmacol ; 77(3): 327-38, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19933401

RESUMEN

The concept of functional selectivity has now thoroughly supplanted the previously entrenched notion of intrinsic efficacy by explaining how agonists and antagonists exhibit a range of efficacies for distinct receptor-mediated responses. It is noteworthy that functional selectivity accommodates significant changes in efficacy resulting from differential expression of G protein-coupled receptor modifying proteins (i.e., "conditional efficacy")-a phenomenon with profound implications for drug discovery. We have uncovered a novel regulatory mechanism whereby p90 ribosomal S6 kinase 2 (RSK2) interacts with 5-hydroxytryptamine(2A) (5-HT(2A)) serotonin receptors and attenuates receptor signaling via direct receptor phosphorylation (Proc Natl Acad Sci U S A 103:4717-4722, 2006; J Biol Chem 284:5557-5573, 2009). This discovery, together with the mounting evidence for conditional efficacy, suggested to us that 5-HT(2A) agonist signaling might be disproportionately affected by alterations in RSK2 expression. To test this hypothesis, we evaluated a chemically diverse set of 5-HT(2A) agonists at three readouts of 5-HT(2A) receptor activation in both wild-type (WT) and RSK2 knock-out (KO) mouse embryonic fibroblasts (MEFs). Here we report that 5-HT(2A) receptor agonist efficacies were significantly and variably augmented in RSK2 KO MEFs compared with WT MEFs. As a result, relative agonist efficacies were significantly altered, and even reversed, between WT and RSK2 KO MEFs for a single effector readout. This study provides the first evidence that deletion of a single kinase can elicit profound changes in patterns of agonist functional selectivity.


Asunto(s)
Eliminación de Gen , Sistema de Señalización de MAP Quinasas/fisiología , Receptor de Serotonina 5-HT2A/fisiología , Proteínas Quinasas S6 Ribosómicas 90-kDa/deficiencia , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Animales , Células Cultivadas , Relación Dosis-Respuesta a Droga , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Ratones Noqueados , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Agonistas del Receptor de Serotonina 5-HT2 , Agonistas de Receptores de Serotonina/farmacología
20.
Trends Pharmacol Sci ; 39(8): 748-765, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29885909

RESUMEN

Seven transmembrane receptor (7TMR) responses are modulated by orthosteric and allosteric ligands to great therapeutic advantage. Here we introduce a unique class of negative allosteric modulator (NAM) - the positive allosteric modulator (PAM)-antagonist - that increases the affinity of the receptor for the agonist but concomitantly decreases agonist efficacy when cobound. Notably, the reciprocation of allosteric energy causes the orthosteric agonist to increase the affinity of the receptor for the PAM-antagonist; thus, this modulator seeks out and destroys agonist-bound receptor complexes. When contrasted with standard orthosteric and allosteric antagonists it is clear that PAM-antagonists are uniquely well suited to reversing ongoing persistent agonism and provide favorable target coverage in vivo. Specifically, the therapeutic application of PAM-antagonists to reverse pathological overactivation (e.g., endothelin vasoconstriction) is emphasized.


Asunto(s)
Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Regulación Alostérica/efectos de los fármacos , Sitio Alostérico , Animales , Humanos , Cinética , Ligandos , Receptores Acoplados a Proteínas G/agonistas , Transducción de Señal , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA