Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Appl Microbiol ; 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38236713

RESUMEN

This review discusses critically how seasonal changes might affect the community composition and dynamics of activated sludge wastewater treatment plants (WWTP), and examines the factors thought more generally to control microbial community assembly, including the role of taxa-time relationships and stochastic and deterministic influences. The review also questions the differences in protocols used in these studies, which make any subsequent attempts at data comparisons problematic. These include bacterial DNA extraction and PCR methodologies, 16S rRNA sequencing and especially its depth, and subsequent statistical analyses of the data, which together often fail to reveal seasonal dynamic community shifts. Suggestions are given as to how experimental protocols need to be improved and standardized, and especially the requirement to examine bacterial populations at the species level. This review looks critically at what is known currently about seasonal influences on key members of this community, including viruses, the bacteria responsible for nitrogen and phosphorus removal and those causing bulking and foaming. The data show many of these species exhibit replicative seasonal abundances over several years, but not under all conditions, illustrating how complex these community dynamics are. Fungal and protozoal/metazoal seasonal community dynamics, less studied, are also discussed. The current data suggest that seasonal temperature fluctuations are responsible for most of seasonal community dynamics by selectively favouring or otherwise individual populations. However, more longer term studies carried out under much stricter controlled conditions are required.

2.
J Environ Manage ; 288: 112470, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33823449

RESUMEN

Sunlight disinfection is important for treatment of wastewater within maturation ponds. This study analyses the movement of Escherichi coli within a slice of a maturation pond, being affected by stratification, sunlight attenuation and mixing driven by wind shear and natural convection using computational fluid dynamics (CFD). Since the exposure to ultraviolet light is most effective in the near-surface region of the pond, natural convective mixing mechanisms to transport the pathogens from the lower parts of the pond are critical for disinfection efficacy. Different turbulence models are considered for closure of the momentum conservation equations and compared with a laminar flow simulation and a completely stirred tank reactor (CSTR) model. The effect of turbulence and stratification is shown to be significant for thermal and velocity distributions, and predictions of E. coli die-off. Greater volume-averaged E. coli die-off was predicted by the computationally convenient CSTR model than the CFD turbulence and laminar models. The simulation results are compared with experimental data and show that complete vertical mixing occurs in a diurnal pattern aiding die-off in sunlight-attenuating water. Practical applications of the model can assist in management strategies for maturation ponds such as off-take locations/times and evaluating seasonal variations in sunlight disinfection.


Asunto(s)
Desinfección , Estanques , Escherichia coli , Luz Solar , Eliminación de Residuos Líquidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA