Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 169(5): 849-861.e13, 2017 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-28502769

RESUMEN

We examined the evolutionary history of leading multidrug resistant hospital pathogens, the enterococci, to their origin hundreds of millions of years ago. Our goal was to understand why, among the vast diversity of gut flora, enterococci are so well adapted to the modern hospital environment. Molecular clock estimation, together with analysis of their environmental distribution, phenotypic diversity, and concordance with host fossil records, place the origins of the enterococci around the time of animal terrestrialization, 425-500 mya. Speciation appears to parallel the diversification of hosts, including the rapid emergence of new enterococcal species following the End Permian Extinction. Major drivers of speciation include changing carbohydrate availability in the host gut. Life on land would have selected for the precise traits that now allow pathogenic enterococci to survive desiccation, starvation, and disinfection in the modern hospital, foreordaining their emergence as leading hospital pathogens.


Asunto(s)
Evolución Biológica , Enterococcus/genética , Animales , Enfermedades Transmisibles Emergentes/microbiología , Infección Hospitalaria/microbiología , Farmacorresistencia Bacteriana , Enterococcus/clasificación , Enterococcus/citología , Enterococcus/efectos de los fármacos , Especiación Genética , Interacciones Huésped-Patógeno , Larva/microbiología , Mariposas Nocturnas/crecimiento & desarrollo , Mariposas Nocturnas/microbiología , Filogenia , ARN Ribosómico 16S/genética
2.
Clin Infect Dis ; 78(4): 833-841, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37823484

RESUMEN

BACKGROUND: The gastrointestinal microbiota is an important line of defense against colonization with antimicrobial resistant (AR) bacteria. In this post hoc analysis of the phase 3 ECOSPOR III trial, we assessed impact of a microbiota-based oral therapeutic (fecal microbiota spores, live; VOWST Oral Spores [VOS], formerly SER-109]; Seres Therapeutics) compared with placebo, on AR gene (ARG) abundance in patients with recurrent Clostridioides difficile infection (rCDI). METHODS: Adults with rCDI were randomized to receive VOS or placebo orally for 3 days following standard-of-care antibiotics. ARG and taxonomic profiles were generated using whole metagenomic sequencing of stool at baseline and weeks 1, 2, 8, and 24 posttreatment. RESULTS: Baseline (n = 151) and serial posttreatment stool samples collected through 24 weeks (total N = 472) from 182 patients (59.9% female; mean age: 65.5 years) in ECOSPOR III as well as 68 stool samples obtained at a single time point from a healthy cohort were analyzed. Baseline ARG abundance was similar between arms and significantly elevated versus the healthy cohort. By week 1, there was a greater decline in ARG abundance in VOS versus placebo (P = .003) in association with marked decline of Proteobacteria and repletion of spore-forming Firmicutes, as compared with baseline. We observed abundance of Proteobacteria and non-spore-forming Firmicutes were associated with ARG abundance, while spore-forming Firmicutes abundance was negatively associated. CONCLUSIONS: This proof-of-concept analysis suggests that microbiome remodeling with Firmicutes spores may be a potential novel approach to reduce ARG colonization in the gastrointestinal tract.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Microbiota , Adulto , Humanos , Femenino , Anciano , Masculino , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Trasplante de Microbiota Fecal , Clostridioides difficile/genética , Farmacorresistencia Bacteriana , Infecciones por Clostridium/microbiología , Bacterias , Firmicutes
3.
BMC Microbiol ; 21(1): 53, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33596852

RESUMEN

BACKGROUND: Urinary tract infections (UTIs) affect 15 million women each year in the United States, with > 20% experiencing frequent recurrent UTIs. A recent placebo-controlled clinical trial found a 39% reduction in UTI symptoms among recurrent UTI sufferers who consumed a daily cranberry beverage for 24 weeks. Using metagenomic sequencing of stool from a subset of these trial participants, we assessed the impact of cranberry consumption on the gut microbiota, a reservoir for UTI-causing pathogens such as Escherichia coli, which causes > 80% of UTIs. RESULTS: The overall taxonomic composition, community diversity, carriage of functional pathways and gene families, and relative abundances of the vast majority of observed bacterial taxa, including E. coli, were not changed significantly by cranberry consumption. However, one unnamed Flavonifractor species (OTU41), which represented ≤1% of the overall metagenome, was significantly less abundant in cranberry consumers compared to placebo at trial completion. Given Flavonifractor's association with negative human health effects, we sought to determine OTU41 characteristic genes that may explain its differential abundance and/or relationship to key host functions. Using comparative genomic and metagenomic techniques, we identified genes in OTU41 related to transport and metabolism of various compounds, including tryptophan and cobalamin, which have been shown to play roles in host-microbe interactions. CONCLUSION: While our results indicated that cranberry juice consumption had little impact on global measures of the microbiome, we found one unnamed Flavonifractor species differed significantly between study arms. This suggests further studies are needed to assess the role of cranberry consumption and Flavonifractor in health and wellbeing in the context of recurrent UTI. TRIAL REGISTRATION: Clinical trial registration number: ClinicalTrials.gov NCT01776021 .


Asunto(s)
Bacterias/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/genética , Extractos Vegetales/administración & dosificación , Vaccinium macrocarpon/química , Adulto , Bacterias/clasificación , Bacterias/genética , Bebidas , Método Doble Ciego , Heces/microbiología , Femenino , Microbioma Gastrointestinal/fisiología , Humanos , Metagenoma , Metagenómica/métodos , Persona de Mediana Edad , Reinfección/microbiología , Reinfección/prevención & control , Infecciones Urinarias/microbiología , Infecciones Urinarias/prevención & control
4.
BMC Genomics ; 21(1): 80, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31992201

RESUMEN

BACKGROUND: Mixed infections of Mycobacterium tuberculosis and antibiotic heteroresistance continue to complicate tuberculosis (TB) diagnosis and treatment. Detection of mixed infections has been limited to molecular genotyping techniques, which lack the sensitivity and resolution to accurately estimate the multiplicity of TB infections. In contrast, whole genome sequencing offers sensitive views of the genetic differences between strains of M. tuberculosis within a sample. Although metagenomic tools exist to classify strains in a metagenomic sample, most tools have been developed for more divergent species, and therefore cannot provide the sensitivity required to disentangle strains within closely related bacterial species such as M. tuberculosis. Here we present QuantTB, a method to identify and quantify individual M. tuberculosis strains in whole genome sequencing data. QuantTB uses SNP markers to determine the combination of strains that best explain the allelic variation observed in a sample. QuantTB outputs a list of identified strains, their corresponding relative abundances, and a list of drugs for which resistance-conferring mutations (or heteroresistance) have been predicted within the sample. RESULTS: We show that QuantTB has a high degree of resolution and is capable of differentiating communities differing by less than 25 SNPs and identifying strains down to 1× coverage. Using simulated data, we found QuantTB outperformed other metagenomic strain identification tools at detecting strains and quantifying strain multiplicity. In a real-world scenario, using a dataset of 50 paired clinical isolates from a study of patients with either reinfections or relapses, we found that QuantTB could detect mixed infections and reinfections at rates concordant with a manually curated approach. CONCLUSION: QuantTB can determine infection multiplicity, identify hetero-resistance patterns, enable differentiation between relapse and re-infection, and clarify transmission events across seemingly unrelated patients - even in low-coverage (1×) samples. QuantTB outperforms existing tools and promises to serve as a valuable resource for both clinicians and researchers working with clinical TB samples.


Asunto(s)
Biología Computacional/métodos , Genoma Bacteriano , Genómica , Mycobacterium tuberculosis/genética , Tuberculosis/microbiología , Secuenciación Completa del Genoma , Algoritmos , Antituberculosos/farmacología , Bases de Datos Genéticas , Farmacorresistencia Bacteriana , Genómica/métodos , Mycobacterium tuberculosis/clasificación , Mycobacterium tuberculosis/efectos de los fármacos , Filogenia , Polimorfismo de Nucleótido Simple , Tuberculosis/tratamiento farmacológico
5.
Proc Natl Acad Sci U S A ; 114(27): E5414-E5423, 2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28630293

RESUMEN

Whether prokaryotes (Bacteria and Archaea) are naturally organized into phenotypically and genetically cohesive units comparable to animal or plant species remains contested, frustrating attempts to estimate how many such units there might be, or to identify the ecological roles they play. Analyses of gene sequences in various closely related prokaryotic groups reveal that sequence diversity is typically organized into distinct clusters, and processes such as periodic selection and extensive recombination are understood to be drivers of cluster formation ("speciation"). However, observed patterns are rarely compared with those obtainable with simple null models of diversification under stochastic lineage birth and death and random genetic drift. Via a combination of simulations and analyses of core and phylogenetic marker genes, we show that patterns of diversity for the genera Escherichia, Neisseria, and Borrelia are generally indistinguishable from patterns arising under a null model. We suggest that caution should thus be taken in interpreting observed clustering as a result of selective evolutionary forces. Unknown forces do, however, appear to play a role in Helicobacter pylori, and some individual genes in all groups fail to conform to the null model. Taken together, we recommend the presented birth-death model as a null hypothesis in prokaryotic speciation studies. It is only when the real data are statistically different from the expectations under the null model that some speciation process should be invoked.


Asunto(s)
Evolución Molecular , Genes Bacterianos , Flujo Genético , Animales , Técnicas de Tipificación Bacteriana , Biodiversidad , Borrelia/genética , Análisis por Conglomerados , Simulación por Computador , Escherichia/genética , Especiación Genética , Variación Genética , Helicobacter pylori/genética , Modelos Genéticos , Neisseria/genética , Filogenia , ARN Ribosómico 16S/genética , Especificidad de la Especie
6.
Appl Environ Microbiol ; 85(22)2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31471308

RESUMEN

Industrial farms are unique, human-created ecosystems that provide the perfect setting for the development and dissemination of antibiotic resistance. Agricultural antibiotic use amplifies naturally occurring resistance mechanisms from soil ecologies, promoting their spread and sharing with other bacteria, including those poised to become endemic within hospital environments. To better understand the role of enterococci in the movement of antibiotic resistance from farm to table to clinic, we characterized over 300 isolates of Enterococcus cultured from raw chicken meat purchased at U.S. supermarkets by the Consumers Union in 2013. Enterococcus faecalis and Enterococcus faecium were the predominant species found, and antimicrobial susceptibility testing uncovered striking levels of resistance to medically important antibiotic classes, particularly from classes approved by the FDA for use in animal production. While nearly all isolates were resistant to at least one drug, bacteria from meat labeled as raised without antibiotics had fewer resistances, particularly for E. faecium Whole-genome sequencing of 92 isolates revealed that both commensal- and clinical-isolate-like enterococcal strains were associated with chicken meat, including isolates bearing important resistance-conferring elements and virulence factors. The ability of enterococci to persist in the food system positions them as vehicles to move resistance genes from the industrial farm ecosystem into more human-proximal ecologies.IMPORTANCE Bacteria that contaminate food can serve as a conduit for moving drug resistance genes from farm to table to clinic. Our results show that chicken meat-associated isolates of Enterococcus are often multidrug resistant, closely related to pathogenic lineages, and harbor worrisome virulence factors. These drug-resistant agricultural isolates could thus represent important stepping stones in the evolution of enterococci into drug-resistant human pathogens. Although significant efforts have been made over the past few years to reduce the agricultural use of antibiotics, continued assessment of agricultural practices, including the roles of processing plants, shared breeding flocks, and probiotics as sources for resistance spread, is needed in order to slow the evolution of antibiotic resistance. Because antibiotic resistance is a global problem, global policies are needed to address this threat. Additional measures must be taken to mitigate the development and spread of antibiotic resistance elements from farms to clinics throughout the world.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Enterococcus/efectos de los fármacos , Carne/microbiología , Aves de Corral/microbiología , Agricultura , Animales , Pollos/microbiología , Ecosistema , Enterococcus/genética , Enterococcus/aislamiento & purificación , Enterococcus faecalis/efectos de los fármacos , Enterococcus faecalis/genética , Enterococcus faecalis/aislamiento & purificación , Enterococcus faecium/efectos de los fármacos , Enterococcus faecium/genética , Enterococcus faecium/aislamiento & purificación , Granjas , Infecciones por Bacterias Grampositivas/microbiología , Infecciones por Bacterias Grampositivas/transmisión , Instituciones de Salud , Humanos , Pruebas de Sensibilidad Microbiana , Alimentos Crudos/microbiología , Factores de Virulencia/genética
7.
Extremophiles ; 21(6): 963-979, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28894932

RESUMEN

Temperature is one of the defining parameters of an ecological niche. Most organisms thrive within a temperature range that rarely exceeds ~30 °C, but the deep subsurface bacterium Kosmotoga olearia can grow over a temperature range of 59 °C (20-79 °C). To identify genes correlated with this flexible phenotype, we compared transcriptomes of K. olearia cultures grown at its optimal 65 °C to those at 30, 40, and 77 °C. The temperature treatments affected expression of 573 of 2224 K. olearia genes. Notably, this transcriptional response elicits re-modeling of the cellular membrane and changes in metabolism, with increased expression of genes involved in energy and carbohydrate metabolism at high temperatures and up-regulation of amino acid metabolism at lower temperatures. At sub-optimal temperatures, many transcriptional changes were similar to those observed in mesophilic bacteria at physiologically low temperatures, including up-regulation of typical cold stress genes and ribosomal proteins. Comparative genomic analysis of additional Thermotogae genomes indicates that one of K. olearia's strategies for low-temperature growth is increased copy number of some typical cold response genes through duplication and/or lateral acquisition. At 77 °C one-third of the up-regulated genes are of hypothetical function, indicating that many features of high-temperature growth are unknown.


Asunto(s)
Genoma Bacteriano , Bacilos Gramnegativos Anaerobios Rectos, Curvos y Espirales/genética , Respuesta al Choque Térmico , Transcriptoma , Aclimatación , Regulación Bacteriana de la Expresión Génica , Bacilos Gramnegativos Anaerobios Rectos, Curvos y Espirales/metabolismo
8.
bioRxiv ; 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38463963

RESUMEN

Low-abundance members of microbial communities are difficult to study in their native habitats. This includes Escherichia coli, a minor, but common inhabitant of the gastrointestinal tract and opportunistic pathogen, including of the urinary tract, where it is the primary pathogen. While multi-omic analyses have detailed critical interactions between uropathogenic Escherichia coli (UPEC) and the bladder that mediate UTI outcome, comparatively little is known about UPEC in its pre-infection reservoir, partly due to its low abundance there (<1% relative abundance). To accurately and sensitively explore the genomes and transcriptomes of diverse E. coli in gastrointestinal communities, we developed E. coli PanSelect which uses a set of probes designed to specifically recognize and capture E. coli's broad pangenome from sequencing libraries. We demonstrated the ability of E. coli PanSelect to enrich, by orders of magnitude, sequencing data from diverse E. coli using a mock community and a set of human stool samples collected as part of a cohort study investigating drivers of recurrent urinary tract infections (rUTI). Comparisons of genomes and transcriptomes between E. coli residing in the gastrointestinal tracts of women with and without a history of rUTI suggest that rUTI gut E. coli are responding to increased levels of oxygen and nitrate, suggestive of mucosal inflammation, which may have implications for recurrent disease. E. coli PanSelect is well suited for investigations of native in vivo biology of E. coli in other environments where it is at low relative abundance, and the framework described here has broad applicability to other highly diverse, low abundance organisms.

9.
Org Biomol Chem ; 10(12): 2373-6, 2012 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-22261792

RESUMEN

The application of the safety-catch linker concept to solid-phase glycoconjugate synthesis is described. The process allows for direct conjugation of resin bound glycans to complex aglycones during cleavage. Large excesses of either coupling partner are not required, and even very hindered alcohols serve as acceptors in the reaction.


Asunto(s)
Tioglicósidos/química , Alcoholes/química , Disacáridos/química , Glicosilación , Estructura Molecular
10.
Genome Biol ; 23(1): 74, 2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-35255937

RESUMEN

Human-associated microbial communities comprise not only complex mixtures of bacterial species, but also mixtures of conspecific strains, the implications of which are mostly unknown since strain level dynamics are underexplored due to the difficulties of studying them. We introduce the Strain Genome Explorer (StrainGE) toolkit, which deconvolves strain mixtures and characterizes component strains at the nucleotide level from short-read metagenomic sequencing with higher sensitivity and resolution than other tools. StrainGE is able to identify strains at 0.1x coverage and detect variants for multiple conspecific strains within a sample from coverages as low as 0.5x.


Asunto(s)
Microbiota , Bacterias/genética , Humanos , Metagenoma , Metagenómica , Microbiota/genética
11.
Antibiotics (Basel) ; 11(9)2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-36140013

RESUMEN

Clostridioides difficile infection (CDI) is classified as an urgent health threat by the Centers for Disease Control and Prevention (CDC), and affects nearly 500,000 Americans annually. Approximately 20−25% of patients with a primary infection experience a recurrence, and the risk of recurrence increases with subsequent episodes to greater than 40%. The leading risk factor for CDI is broad-spectrum antibiotics, which leads to a loss of microbial diversity and impaired colonization resistance. Current FDA-approved CDI treatment strategies target toxin or toxin-producing bacteria, but do not address microbiome disruption, which is key to the pathogenesis of recurrent CDI. Fecal microbiota transplantation (FMT) reduces the risk of recurrent CDI through the restoration of microbial diversity. However, FDA safety alerts describing hospitalizations and deaths related to pathogen transmission have raised safety concerns with the use of unregulated and unstandardized donor-derived products. SER-109 is an investigational oral microbiome therapeutic composed of purified spore-forming Firmicutes. SER-109 was superior to a placebo in reducing CDI recurrence at Week 8 (12% vs. 40%, respectively; p < 0.001) in adults with a history of recurrent CDI with a favorable observed safety profile. Here, we discuss the role of the microbiome in CDI pathogenesis and the clinical development of SER-109, including its rigorous manufacturing process, which mitigates the risk of pathogen transmission. Additionally, we discuss compositional and functional changes in the gastrointestinal microbiome in patients with recurrent CDI following treatment with SER-109 that are critical to a sustained clinical response.

12.
Mol Ecol Resour ; 22(6): 2285-2303, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35437908

RESUMEN

Multiplexed PCR amplicon sequencing (AmpSeq) is an increasingly popular application for cost-effective monitoring of threatened species and managed wildlife populations, and shows strong potential for the genomic epidemiology of infectious disease. AmpSeq data from infectious microbes can inform disease control in multiple ways, such as by measuring drug resistance marker prevalence, distinguishing imported from local cases, and determining the effectiveness of therapeutics. We describe the design and comparative evaluation of two new AmpSeq assays for Plasmodium falciparum malaria parasites: a four-locus panel ("4CAST") composed of highly diverse antigens, and a 129-locus panel ("AMPLseq") composed of drug resistance markers, highly diverse loci for inferring relatedness, and a locus to detect Plasmodium vivax co-infection. We explore the performance of each panel in various public health use cases with in silico simulations as well as empirical experiments. The 4CAST panel appears highly suitable for evaluating the number of distinct parasite strains within samples (complexity of infection), showing strong performance across a wide range of parasitaemia levels without a DNA pre-amplification step. For relatedness inference, the larger AMPLseq panel performs similarly to two existing panels of comparable size, despite differences in the data and approach used for designing each panel. Finally, we describe an R package (paneljudge) that facilitates the design and comparative evaluation of genetic panels for relatedness estimation, and we provide general guidance on the design and implementation of AmpSeq panels for the genomic epidemiology of infectious disease.


Asunto(s)
Enfermedades Transmisibles , Malaria Vivax , Malaria , Genómica , Humanos , Malaria Vivax/epidemiología , Malaria Vivax/parasitología , Plasmodium falciparum/genética , Plasmodium vivax/genética
13.
Nat Microbiol ; 7(5): 630-639, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35505248

RESUMEN

Recurrent urinary tract infections (rUTIs) are a major health burden worldwide, with history of infection being a significant risk factor. While the gut is a known reservoir for uropathogenic bacteria, the role of the microbiota in rUTI remains unclear. We conducted a year-long study of women with (n = 15) and without (n = 16) history of rUTI, from whom we collected urine, blood and monthly faecal samples for metagenomic and transcriptomic interrogation. During the study 24 UTIs were reported, with additional samples collected during and after infection. The gut microbiome of individuals with a history of rUTI was significantly depleted in microbial richness and butyrate-producing bacteria compared with controls, reminiscent of other inflammatory conditions. However, Escherichia coli gut and bladder populations were comparable between cohorts in both relative abundance and phylogroup. Transcriptional analysis of peripheral blood mononuclear cells revealed expression profiles indicative of differential systemic immunity between cohorts. Altogether, these results suggest that rUTI susceptibility is in part mediated through the gut-bladder axis, comprising gut dysbiosis and differential immune response to bacterial bladder colonization, manifesting in symptoms.


Asunto(s)
Infecciones por Escherichia coli , Microbioma Gastrointestinal , Infecciones Urinarias , Disbiosis , Escherichia coli , Infecciones por Escherichia coli/microbiología , Femenino , Humanos , Leucocitos Mononucleares , Masculino , Infecciones Urinarias/microbiología
14.
Front Microbiol ; 11: 1925, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013732

RESUMEN

Metagenomic sequencing is a powerful tool for examining the diversity and complexity of microbial communities. Most widely used tools for taxonomic profiling of metagenomic sequence data allow for a species-level overview of the composition. However, individual strains within a species can differ greatly in key genotypic and phenotypic characteristics, such as drug resistance, virulence and growth rate. Therefore, the ability to resolve microbial communities down to the level of individual strains within a species is critical to interpreting metagenomic data for clinical and environmental applications, where identifying a particular strain, or tracking a particular strain across a set of samples, can help aid in clinical diagnosis and treatment, or in characterizing yet unstudied strains across novel environmental locations. Recently published approaches have begun to tackle the problem of resolving strains within a particular species in metagenomic samples. In this review, we present an overview of these new algorithms and their uses, including methods based on assembly reconstruction and methods operating with or without a reference database. While existing metagenomic analysis methods show reasonable performance at the species and higher taxonomic levels, identifying closely related strains within a species presents a bigger challenge, due to the diversity of databases, genetic relatedness, and goals when conducting these analyses. Selection of which metagenomic tool to employ for a specific application should be performed on a case-by case basis as these tools have strengths and weaknesses that affect their performance on specific tasks. A comprehensive benchmark across different use case scenarios is vital to validate performance of these tools on microbial samples. Because strain-level metagenomic analysis is still in its infancy, development of more fine-grained, high-resolution algorithms will continue to be in demand for the future.

15.
Sci Rep ; 10(1): 13847, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32796890

RESUMEN

Wolbachia, an endosymbiotic alpha-proteobacterium commonly found in insects, can inhibit the transmission of human pathogens by mosquitoes. Biocontrol programs are underway using Aedes aegypti mosquitoes trans-infected with a non-natural Wolbachia strain to reduce dengue virus transmission. Less is known about the impact of Wolbachia on the biology and vectorial capacity of Anopheles mosquitoes, the vectors of malaria parasites. A naturally occurring strain of Wolbachia, wAnga, infects populations of the major malaria vectors Anopheles gambiae and Anopheles coluzzii in Burkina Faso. Previous studies found wAnga infection was negatively correlated with Plasmodium infection in the mosquito and wAnga influenced mosquito egg-laying behavior. Here, we investigate wAnga in natural populations of An. coluzzii and its interactions with other resident microbiota using targeted 16S sequencing. Though we find no major differences in microbiota composition associated with wAnga infection, we do find several taxa that correlate with the presence or absence of wAnga in female mosquitoes following oviposition, with the caveat that we could not rule out batch effects due to the unanticipated impact of wAnga on oviposition timing. These data suggest wAnga may influence or interact with the Anopheles microbiota, which may contribute to the impact of wAnga on Anopheles biology and vectorial capacity.


Asunto(s)
Anopheles/microbiología , Anopheles/fisiología , Interacciones Microbiota-Huesped/fisiología , Insectos Vectores , Wolbachia , Animales , Burkina Faso , Vectores de Enfermedades , Femenino , Malaria/transmisión , Control de Mosquitos/métodos , Oviposición , Enfermedades Transmitidas por Vectores/transmisión
16.
Wellcome Open Res ; 3: 70, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30320226

RESUMEN

Background: Malaria parasites go through major transitions during their complex life cycle, yet the underlying differentiation pathways remain obscure. Here we apply single cell transcriptomics to unravel the program inducing sexual differentiation in Plasmodium falciparum. Parasites have to make this essential life-cycle decision in preparation for human-to-mosquito transmission. Methods: By combining transcriptional profiling with quantitative imaging and genetics, we defined a transcriptional signature in sexually committed cells. Results: We found this transcriptional signature to be distinct from general changes in parasite metabolism that can be observed in response to commitment-inducing conditions. Conclusions: This proof-of-concept study provides a template to capture transcriptional diversity in parasite populations containing complex mixtures of different life-cycle stages and developmental programs, with important implications for our understanding of parasite biology and the ongoing malaria elimination campaign.

17.
Genome Biol Evol ; 8(3): 649-64, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26992913

RESUMEN

Modern industrial agriculture depends on high-density cultivation of genetically similar crop plants, creating favorable conditions for the emergence of novel pathogens with increased fitness in managed compared with ecologically intact settings. Here, we present the genome sequence of six strains of the cucurbit bacterial wilt pathogen Erwinia tracheiphila (Enterobacteriaceae) isolated from infected squash plants in New York, Pennsylvania, Kentucky, and Michigan. These genomes exhibit a high proportion of recent horizontal gene acquisitions, invasion and remarkable amplification of mobile genetic elements, and pseudogenization of approximately 20% of the coding sequences. These genome attributes indicate that E. tracheiphila recently emerged as a host-restricted pathogen. Furthermore, chromosomal rearrangements associated with phage and transposable element proliferation contribute to substantial differences in gene content and genetic architecture between the six E. tracheiphila strains and other Erwinia species. Together, these data lead us to hypothesize that E. tracheiphila has undergone recent evolution through both genome decay (pseudogenization) and genome expansion (horizontal gene transfer and mobile element amplification). Despite evidence of dramatic genomic changes, the six strains are genetically monomorphic, suggesting a recent population bottleneck and emergence into E. tracheiphila's current ecological niche.


Asunto(s)
Cucurbita/genética , Erwinia/genética , Evolución Molecular , Enfermedades de las Plantas/genética , Erwinia/patogenicidad , Transferencia de Gen Horizontal , Genoma de Planta/genética , Interacciones Huésped-Patógeno/genética , Secuencias Repetitivas Esparcidas/genética , Enfermedades de las Plantas/parasitología
18.
Genome Announc ; 3(3)2015 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-26044415

RESUMEN

Erwinia tracheiphila is one of the most economically important pathogens of cucumbers, melons, squashes, pumpkins, and gourds in the northeastern and midwestern United States, yet its molecular pathology remains uninvestigated. Here, we report the first draft genome sequence of an E. tracheiphila strain isolated from an infected wild gourd (Cucurbita pepo subsp. texana) plant. The genome assembly consists of 7 contigs and includes a putative plasmid and at least 20 phage and prophage elements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA