Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; : e0071424, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38809021

RESUMEN

Lassa virus (LASV) is the causative agent of human Lassa fever which in severe cases manifests as hemorrhagic fever leading to thousands of deaths annually. However, no approved vaccines or antiviral drugs are currently available. Recently, we screened approximately 2,500 compounds using a recombinant vesicular stomatitis virus (VSV) expressing LASV glycoprotein GP (VSV-LASVGP) and identified a P-glycoprotein inhibitor as a potential LASV entry inhibitor. Here, we show that another identified candidate, hexestrol (HES), an estrogen receptor agonist, is also a LASV entry inhibitor. HES inhibited VSV-LASVGP replication with a 50% inhibitory concentration (IC50) of 0.63 µM. Importantly, HES also inhibited authentic LASV replication with IC50 values of 0.31 µM-0.61 µM. Time-of-addition and cell-based membrane fusion assays suggested that HES inhibits the membrane fusion step during virus entry. Alternative estrogen receptor agonists did not inhibit VSV-LASVGP replication, suggesting that the estrogen receptor itself is unlikely to be involved in the antiviral activity of HES. Generation of a HES-resistant mutant revealed that the phenylalanine at amino acid position 446 (F446) of LASVGP, which is located in the transmembrane region, conferred resistance to HES. Although mutation of F446 enhanced the membrane fusion activity of LASVGP, it exhibited reduced VSV-LASVGP replication, most likely due to the instability of the pre-fusion state of LASVGP. Collectively, our results demonstrated that HES is a promising anti-LASV drug that acts by inhibiting the membrane fusion step of LASV entry. This study also highlights the importance of the LASVGP transmembrane region as a target for anti-LASV drugs.IMPORTANCELassa virus (LASV), the causative agent of Lassa fever, is the most devastating mammarenavirus with respect to its impact on public health in West Africa. However, no approved antiviral drugs or vaccines are currently available. Here, we identified hexestrol (HES), an estrogen receptor agonist, as the potential antiviral candidate drug. We showed that the estrogen receptor itself is not involved in the antiviral activity. HES directly bound to LASVGP and blocked membrane fusion, thereby inhibiting LASV infection. Through the generation of a HES-resistant virus, we found that phenylalanine at position 446 (F446) within the LASVGP transmembrane region plays a crucial role in the antiviral activity of HES. The mutation at F446 caused reduced virus replication, likely due to the instability of the pre-fusion state of LASVGP. These findings highlight the potential of HES as a promising candidate for the development of antiviral compounds targeting LASV.

2.
Nature ; 533(7601): 100-4, 2016 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-27147028

RESUMEN

Despite the magnitude of the Ebola virus disease (EVD) outbreak in West Africa, there is still a fundamental lack of knowledge about the pathophysiology of EVD. In particular, very little is known about human immune responses to Ebola virus. Here we evaluate the physiology of the human T cell immune response in EVD patients at the time of admission to the Ebola Treatment Center in Guinea, and longitudinally until discharge or death. Through the use of multiparametric flow cytometry established by the European Mobile Laboratory in the field, we identify an immune signature that is unique in EVD fatalities. Fatal EVD was characterized by a high percentage of CD4(+) and CD8(+) T cells expressing the inhibitory molecules CTLA-4 and PD-1, which correlated with elevated inflammatory markers and high virus load. Conversely, surviving individuals showed significantly lower expression of CTLA-4 and PD-1 as well as lower inflammation, despite comparable overall T cell activation. Concomitant with virus clearance, survivors mounted a robust Ebola-virus-specific T cell response. Our findings suggest that dysregulation of the T cell response is a key component of EVD pathophysiology.


Asunto(s)
Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/inmunología , Fiebre Hemorrágica Ebola/fisiopatología , Linfocitos T/inmunología , Antígeno CTLA-4/metabolismo , Femenino , Citometría de Flujo , Guinea/epidemiología , Fiebre Hemorrágica Ebola/mortalidad , Humanos , Mediadores de Inflamación/inmunología , Estudios Longitudinales , Activación de Linfocitos , Masculino , Alta del Paciente , Receptor de Muerte Celular Programada 1/metabolismo , Sobrevivientes , Linfocitos T/metabolismo , Carga Viral
3.
Proc Natl Acad Sci U S A ; 115(28): 7320-7325, 2018 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-29941589

RESUMEN

Lassa virus is an Old World arenavirus endemic to West Africa that causes severe hemorrhagic fever. Vaccine development has focused on the envelope glycoprotein complex (GPC) that extends from the virion envelope. The often inadequate antibody immune response elicited by both vaccine and natural infection has been, in part, attributed to the abundance of N-linked glycosylation on the GPC. Here, using a virus-like-particle system that presents Lassa virus GPC in a native-like context, we determine the composite population of each of the N-linked glycosylation sites presented on the trimeric GPC spike. Our analysis reveals the presence of underprocessed oligomannose-type glycans, which form punctuated clusters that obscure the proteinous surface of both the GP1 attachment and GP2 fusion glycoprotein subunits of the Lassa virus GPC. These oligomannose clusters are seemingly derived as a result of sterically reduced accessibility to glycan processing enzymes, and limited amino acid diversification around these sites supports their role protecting against the humoral immune response. Combined, our data provide a structure-based blueprint for understanding how glycans render the glycoprotein spikes of Lassa virus and other Old World arenaviruses immunologically resistant targets.


Asunto(s)
Virus Lassa/química , Oligosacáridos/química , Proteínas del Envoltorio Viral/química , Glicosilación , Virus Lassa/inmunología , Oligosacáridos/inmunología , Proteínas del Envoltorio Viral/inmunología
4.
J Infect Dis ; 222(4): 572-582, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31603201

RESUMEN

BACKGROUND: Ebola virus (EBOV) epidemics pose a major public health risk. There currently is no licensed human vaccine against EBOV. The safety and immunogenicity of a recombinant EBOV glycoprotein (GP) nanoparticle vaccine formulated with or without Matrix-M adjuvant were evaluated to support vaccine development. METHODS: A phase 1, placebo-controlled, dose-escalation trial was conducted in 230 healthy adults to evaluate 4 EBOV GP antigen doses as single- or 2-dose regimens with or without adjuvant. Safety and immunogenicity were assessed through 1-year postdosing. RESULTS: All EBOV GP vaccine formulations were well tolerated. Receipt of 2 doses of EBOV GP with adjuvant showed a rapid increase in anti-EBOV GP immunoglobulin G titers with peak titers observed on Day 35 representing 498- to 754-fold increases from baseline; no evidence of an antigen dose response was observed. Serum EBOV-neutralizing and binding antibodies using wild-type Zaire EBOV (ZEBOV) or pseudovirion assays were 3- to 9-fold higher among recipients of 2-dose EBOV GP with adjuvant, compared with placebo on Day 35, which persisted through 1 year. CONCLUSIONS: Ebola virus GP vaccine with Matrix-M adjuvant is well tolerated and elicits a robust and persistent immune response. These data suggest that further development of this candidate vaccine for prevention of EBOV disease is warranted.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Vacunas contra el Virus del Ébola/inmunología , Fiebre Hemorrágica Ebola/prevención & control , Nanopartículas/administración & dosificación , Saponinas/administración & dosificación , Proteínas del Envoltorio Viral/inmunología , Adulto , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Australia , Femenino , Voluntarios Sanos , Humanos , Masculino , Seguridad , Vacunación , Adulto Joven
5.
Clin Infect Dis ; 71(11): 2872-2879, 2020 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-31784751

RESUMEN

BACKGROUND: In October 2015, 65 people came into direct contact with a healthcare worker presenting with a late reactivation of Ebola virus disease (EVD) in the United Kingdom. Vaccination was offered to 45 individuals with an initial assessment of high exposure risk. METHODS: Approval for rapid expanded access to the recombinant vesicular stomatitis virus-Zaire Ebola virus (rVSV-ZEBOV) vaccine as an unlicensed emergency medicine was obtained from the relevant authorities. An observational follow-up study was carried out for 1 year following vaccination. RESULTS: Twenty-six of 45 individuals elected to receive vaccination between 10 and 11 October 2015 following written informed consent. By day 14, 39% had seroconverted, increasing to 87% by day 28 and 100% by 3 months, although these responses were not always sustained. Neutralizing antibody responses were detectable in 36% by day 14 and 73% at 12 months. Common side effects included fatigue, myalgia, headache, arthralgia, and fever. These were positively associated with glycoprotein-specific T-cell but not immunoglobulin (Ig) M or IgG antibody responses. No severe vaccine-related adverse events were reported. No one exposed to the virus became infected. CONCLUSIONS: This paper reports the use of the rVSV-ZEBOV vaccine given as an emergency intervention to individuals exposed to a patient presenting with a late reactivation of EVD. The vaccine was relatively well tolerated, but a high percentage developed a fever ≥37.5°C, necessitating urgent screening for Ebola virus, and a small number developed persistent arthralgia.


Asunto(s)
Vacunas contra el Virus del Ébola/uso terapéutico , Fiebre Hemorrágica Ebola , Profilaxis Posexposición , Anticuerpos Antivirales , Ebolavirus , Estudios de Seguimiento , Fiebre Hemorrágica Ebola/prevención & control , Humanos , Recurrencia , Reino Unido
6.
Emerg Infect Dis ; 26(4): 760-763, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32186496

RESUMEN

Ebola virus (EBOV) is a highly pathogenic zoonotic virus for which the reservoir host has not been identified. To study the role of dogs as potential hosts, we screened 300 serum samples from dogs in Sierra Leone and found EBOV neutralizing antibodies in 12, suggesting their susceptibility to natural infection.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Animales , Anticuerpos Neutralizantes , Brotes de Enfermedades , Perros , Fiebre Hemorrágica Ebola/epidemiología , Fiebre Hemorrágica Ebola/veterinaria , Sierra Leona/epidemiología
7.
J Infect Dis ; 219(4): 556-561, 2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30452666

RESUMEN

In response to the Ebola virus (EBOV) crisis of 2013-2016, a recombinant vesicular stomatitis virus (VSV)-based EBOV vaccine was clinically tested (NCT02283099). A single-dose regimen of VSV-EBOV revealed a safe and immunogenic profile and demonstrated clinical efficacy. While EBOV-specific immune responses to this candidate vaccine have previously been investigated, limited human data on immunity to the VSV vector are available. Within the scope of a phase 1 study, we performed a comprehensive longitudinal analysis of adaptive immune responses to internal VSV proteins following VSV-EBOV immunization. While no preexisting immunity to the vector was observed, more than one-third of subjects developed VSV-specific cytotoxic T-lymphocyte responses and antibodies.


Asunto(s)
Formación de Anticuerpos , Vacunas contra el Virus del Ébola/inmunología , Inmunidad Celular , Vesiculovirus/inmunología , Adulto , Vacunas contra el Virus del Ébola/administración & dosificación , Humanos , Estudios Longitudinales , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/inmunología
8.
N Engl J Med ; 374(1): 23-32, 2016 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-26735991

RESUMEN

BACKGROUND: Malaria treatment is recommended for patients with suspected Ebola virus disease (EVD) in West Africa, whether systeomatically or based on confirmed malaria diagnosis. At the Ebola treatment center in Foya, Lofa County, Liberia, the supply of artemether-lumefantrine, a first-line antimalarial combination drug, ran out for a 12-day period in August 2014. During this time, patients received the combination drug artesunate-amodiaquine; amodiaquine is a compound with anti-Ebola virus activity in vitro. No other obvious change in the care of patients occurred during this period. METHODS: We fit unadjusted and adjusted regression models to standardized patient-level data to estimate the risk ratio for death among patients with confirmed EVD who were prescribed artesunate-amodiaquine (artesunate-amodiaquine group), as compared with those who were prescribed artemether-lumefantrine (artemether-lumefantrine group) and those who were not prescribed any antimalarial drug (no-antimalarial group). RESULTS: Between June 5 and October 24, 2014, a total of 382 patients with confirmed EVD were admitted to the Ebola treatment center in Foya. At admission, 194 patients were prescribed artemether-lumefantrine and 71 were prescribed artesunate-amodiaquine. The characteristics of the patients in the artesunate-amodiaquine group were similar to those in the artemether-lumefantrine group and those in the no-antimalarial group. A total of 125 of the 194 patients in the artemether-lumefantrine group (64.4%) died, as compared with 36 of the 71 patients in the artesunate-amodiaquine group (50.7%). In adjusted analyses, the artesunate-amodiaquine group had a 31% lower risk of death than the artemether-lumefantrine group (risk ratio, 0.69; 95% confidence interval, 0.54 to 0.89), with a stronger effect observed among patients without malaria. CONCLUSIONS: Patients who were prescribed artesunate-amodiaquine had a lower risk of death from EVD than did patients who were prescribed artemether-lumefantrine. However, our analyses cannot exclude the possibility that artemether-lumefantrine is associated with an increased risk of death or that the use of artesunate-amodiaquine was associated with unmeasured patient characteristics that directly altered the risk of death.


Asunto(s)
Amodiaquina/uso terapéutico , Antimaláricos/uso terapéutico , Artemisininas/uso terapéutico , Etanolaminas/uso terapéutico , Fluorenos/uso terapéutico , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Malaria/complicaciones , Adolescente , Adulto , Antibacterianos/uso terapéutico , Antimaláricos/efectos adversos , Combinación Arteméter y Lumefantrina , Niño , Preescolar , Combinación de Medicamentos , Femenino , Fiebre Hemorrágica Ebola/complicaciones , Fiebre Hemorrágica Ebola/mortalidad , Humanos , Lactante , Liberia , Malaria/tratamiento farmacológico , Masculino , Persona de Mediana Edad , Análisis de Regresión , Riesgo , Adulto Joven
9.
N Engl J Med ; 374(17): 1647-60, 2016 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-25830326

RESUMEN

BACKGROUND: The replication-competent recombinant vesicular stomatitis virus (rVSV)-based vaccine expressing a Zaire ebolavirus (ZEBOV) glycoprotein was selected for rapid safety and immunogenicity testing before its use in West Africa. METHODS: We performed three open-label, dose-escalation phase 1 trials and one randomized, double-blind, controlled phase 1 trial to assess the safety, side-effect profile, and immunogenicity of rVSV-ZEBOV at various doses in 158 healthy adults in Europe and Africa. All participants were injected with doses of vaccine ranging from 300,000 to 50 million plaque-forming units (PFU) or placebo. RESULTS: No serious vaccine-related adverse events were reported. Mild-to-moderate early-onset reactogenicity was frequent but transient (median, 1 day). Fever was observed in up to 30% of vaccinees. Vaccine viremia was detected within 3 days in 123 of the 130 participants (95%) receiving 3 million PFU or more; rVSV was not detected in saliva or urine. In the second week after injection, arthritis affecting one to four joints developed in 11 of 51 participants (22%) in Geneva, with pain lasting a median of 8 days (interquartile range, 4 to 87); 2 self-limited cases occurred in 60 participants (3%) in Hamburg, Germany, and Kilifi, Kenya. The virus was identified in one synovial-fluid aspirate and in skin vesicles of 2 other vaccinees, showing peripheral viral replication in the second week after immunization. ZEBOV-glycoprotein-specific antibody responses were detected in all the participants, with similar glycoprotein-binding antibody titers but significantly higher neutralizing antibody titers at higher doses. Glycoprotein-binding antibody titers were sustained through 180 days in all participants. CONCLUSIONS: In these studies, rVSV-ZEBOV was reactogenic but immunogenic after a single dose and warrants further evaluation for safety and efficacy. (Funded by the Wellcome Trust and others; ClinicalTrials.gov numbers, NCT02283099, NCT02287480, and NCT02296983; Pan African Clinical Trials Registry number, PACTR201411000919191.).


Asunto(s)
Vacunas contra el Virus del Ébola/inmunología , Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/prevención & control , Glicoproteínas de Membrana/inmunología , Proteínas del Envoltorio Viral/inmunología , Adulto , Anticuerpos Antivirales/sangre , Artritis/etiología , Dermatitis/etiología , Método Doble Ciego , Vacunas contra el Virus del Ébola/administración & dosificación , Vacunas contra el Virus del Ébola/efectos adversos , Ebolavirus/aislamiento & purificación , Exantema/etiología , Femenino , Fiebre Hemorrágica Ebola/inmunología , Humanos , Masculino , Persona de Mediana Edad , Proteínas Recombinantes , Vesiculovirus , Viremia , Esparcimiento de Virus
10.
N Engl J Med ; 374(17): 1635-46, 2016 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-25629663

RESUMEN

BACKGROUND: The West African outbreak of Ebola virus disease that peaked in 2014 has caused more than 11,000 deaths. The development of an effective Ebola vaccine is a priority for control of a future outbreak. METHODS: In this phase 1 study, we administered a single dose of the chimpanzee adenovirus 3 (ChAd3) vaccine encoding the surface glycoprotein of Zaire ebolavirus (ZEBOV) to 60 healthy adult volunteers in Oxford, United Kingdom. The vaccine was administered in three dose levels--1×10(10) viral particles, 2.5×10(10) viral particles, and 5×10(10) viral particles--with 20 participants in each group. We then assessed the effect of adding a booster dose of a modified vaccinia Ankara (MVA) strain, encoding the same Ebola virus glycoprotein, in 30 of the 60 participants and evaluated a reduced prime-boost interval in another 16 participants. We also compared antibody responses to inactivated whole Ebola virus virions and neutralizing antibody activity with those observed in phase 1 studies of a recombinant vesicular stomatitis virus-based vaccine expressing a ZEBOV glycoprotein (rVSV-ZEBOV) to determine relative potency and assess durability. RESULTS: No safety concerns were identified at any of the dose levels studied. Four weeks after immunization with the ChAd3 vaccine, ZEBOV-specific antibody responses were similar to those induced by rVSV-ZEBOV vaccination, with a geometric mean titer of 752 and 921, respectively. ZEBOV neutralization activity was also similar with the two vaccines (geometric mean titer, 14.9 and 22.2, respectively). Boosting with the MVA vector increased virus-specific antibodies by a factor of 12 (geometric mean titer, 9007) and increased glycoprotein-specific CD8+ T cells by a factor of 5. Significant increases in neutralizing antibodies were seen after boosting in all 30 participants (geometric mean titer, 139; P<0.001). Virus-specific antibody responses in participants primed with ChAd3 remained positive 6 months after vaccination (geometric mean titer, 758) but were significantly higher in those who had received the MVA booster (geometric mean titer, 1750; P<0.001). CONCLUSIONS: The ChAd3 vaccine boosted with MVA elicited B-cell and T-cell immune responses to ZEBOV that were superior to those induced by the ChAd3 vaccine alone. (Funded by the Wellcome Trust and others; ClinicalTrials.gov number, NCT02240875.).


Asunto(s)
Vacunas contra el Virus del Ébola/inmunología , Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/prevención & control , Adenovirus de los Simios/inmunología , Adulto , Animales , Anticuerpos Antivirales/sangre , Linfocitos B/fisiología , Citocinas/sangre , Vacunas contra el Virus del Ébola/administración & dosificación , Femenino , Fiebre Hemorrágica Ebola/inmunología , Humanos , Inmunidad Celular , Inmunización Secundaria , Masculino , Persona de Mediana Edad , Pan troglodytes , Linfocitos T/fisiología , Vaccinia , Adulto Joven
11.
J Infect Dis ; 218(suppl_5): S305-S311, 2018 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-29982580

RESUMEN

Many human ebolavirus outbreaks have been linked to contact with wildlife including nonhuman primates and bats, which are assumed to serve as host species. However, it is largely unknown to what extent other animal species, particularly livestock, are involved in the transmission cycle or act as additional hosts for filoviruses. Pigs were identified as a susceptible host for Reston virus with subsequent transmission to humans reported in the Philippines. To date, there is no evidence of natural Ebola virus (EBOV) infection in pigs, although pigs were shown to be susceptible to EBOV infection under experimental settings. To investigate the potential role of pigs in the ecology of EBOV, we analyzed 400 porcine serum samples from Sierra Leone for the presence of ebolavirus-specific antibodies. Three samples reacted with ebolavirus nucleoproteins but had no neutralizing antibodies. Our results (1) suggest the circulation of ebolaviruses in swine in Sierra Leone that are antigenically related but not identical to EBOV and (2) could represent undiscovered ebolaviruses with unknown pathogenic and/or zoonotic potential.


Asunto(s)
Ebolavirus/genética , Fiebre Hemorrágica Ebola/virología , Porcinos/virología , Animales , Animales Salvajes/sangre , Animales Salvajes/inmunología , Animales Salvajes/virología , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Ebolavirus/inmunología , Femenino , Fiebre Hemorrágica Ebola/sangre , Fiebre Hemorrágica Ebola/inmunología , Humanos , Masculino , Nucleoproteínas/inmunología , Filipinas , Suero/inmunología , Suero/virología , Sierra Leona
13.
J Virol ; 91(22)2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28878077

RESUMEN

Effective CD8+ T cell responses play an important role in determining the course of a viral infection. Overwhelming antigen exposure can result in suboptimal CD8+ T cell responses, leading to chronic infection. This altered CD8+ T cell differentiation state, termed exhaustion, is characterized by reduced effector function, upregulation of inhibitory receptors, and altered expression of transcription factors. Prevention of overwhelming antigen exposure to limit CD8+ T cell exhaustion is of significant interest for the control of chronic infection. The transcription factor interferon regulatory factor 9 (IRF9) is a component of type I interferon (IFN-I) signaling downstream of the IFN-I receptor (IFNAR). Using acute infection of mice with lymphocytic choriomeningitis virus (LCMV) strain Armstrong, we show here that IRF9 limited early LCMV replication by regulating expression of interferon-stimulated genes and IFN-I and by controlling levels of IRF7, a transcription factor essential for IFN-I production. Infection of IRF9- or IFNAR-deficient mice led to a loss of early restriction of viral replication and impaired antiviral responses in dendritic cells, resulting in CD8+ T cell exhaustion and chronic infection. Differences in the antiviral activities of IRF9- and IFNAR-deficient mice and dendritic cells provided further evidence of IRF9-independent IFN-I signaling. Thus, our findings illustrate a CD8+ T cell-extrinsic function for IRF9, as a signaling factor downstream of IFNAR, in preventing overwhelming antigen exposure resulting in CD8+ T cell exhaustion and, ultimately, chronic infection.IMPORTANCE During early viral infection, overwhelming antigen exposure can cause functional exhaustion of CD8+ T cells and lead to chronic infection. Here we show that the transcription factor interferon regulatory factor 9 (IRF9) plays a decisive role in preventing CD8+ T cell exhaustion. Using acute infection of mice with LCMV strain Armstrong, we found that IRF9 limited early LCMV replication by regulating expression of interferon-stimulated genes and Irf7, encoding a transcription factor crucial for type I interferon (IFN-I) production, as well as by controlling the levels of IFN-I. Infection of IRF9-deficient mice led to a chronic infection that was accompanied by CD8+ T cell exhaustion due to defects extrinsic to T cells. Our findings illustrate an essential role for IRF9, as a mediator downstream of IFNAR, in preventing overwhelming antigen exposure causing CD8+ T cell exhaustion and leading to chronic viral infection.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/inmunología , Coriomeningitis Linfocítica/inmunología , Virus de la Coriomeningitis Linfocítica/inmunología , Transducción de Señal/inmunología , Enfermedad Aguda , Animales , Linfocitos T CD8-positivos/patología , Enfermedad Crónica , Factor 7 Regulador del Interferón , Interferón Tipo I/genética , Interferón Tipo I/inmunología , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/genética , Coriomeningitis Linfocítica/genética , Coriomeningitis Linfocítica/patología , Virus de la Coriomeningitis Linfocítica/genética , Ratones , Ratones Noqueados , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/inmunología , Transducción de Señal/genética
14.
PLoS Pathog ; 12(2): e1005418, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26849049

RESUMEN

Lassa virus is an enveloped, bi-segmented RNA virus and the most prevalent and fatal of all Old World arenaviruses. Virus entry into the host cell is mediated by a tripartite surface spike complex, which is composed of two viral glycoprotein subunits, GP1 and GP2, and the stable signal peptide. Of these, GP1 binds to cellular receptors and GP2 catalyzes fusion between the viral envelope and the host cell membrane during endocytosis. The molecular structure of the spike and conformational rearrangements induced by low pH, prior to fusion, remain poorly understood. Here, we analyzed the three-dimensional ultrastructure of Lassa virus using electron cryotomography. Sub-tomogram averaging yielded a structure of the glycoprotein spike at 14-Å resolution. The spikes are trimeric, cover the virion envelope, and connect to the underlying matrix. Structural changes to the spike, following acidification, support a viral entry mechanism dependent on binding to the lysosome-resident receptor LAMP1 and further dissociation of the membrane-distal GP1 subunits.


Asunto(s)
Glicoproteínas/metabolismo , Virus Lassa/metabolismo , Proteínas de Membrana de los Lisosomas/metabolismo , Señales de Clasificación de Proteína , Proteínas del Envoltorio Viral/metabolismo , Animales , Chlorocebus aethiops , Glicoproteínas/química , Concentración de Iones de Hidrógeno , Virus Lassa/química , Virus Lassa/ultraestructura , Proteínas de Membrana de los Lisosomas/química , Modelos Moleculares , Conformación Molecular , Complejos Multiproteicos , Unión Proteica , Estructura Terciaria de Proteína , Células Vero , Proteínas del Envoltorio Viral/química , Virión , Internalización del Virus
15.
J Infect Dis ; 215(2): 287-292, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27799354

RESUMEN

The West African Ebola virus disease (EVD) outbreak was the largest EVD outbreak in history. However, data on lymphocyte dynamics and the antigen specificity of T cells in Ebola survivors are scarce, and our understanding of EVD pathophysiology is limited. A case of EVD survival in which the patient cleared Ebola virus (EBOV) infection without experimental drugs allowed for the detailed examination of lymphocyte dynamics. We demonstrate the persistence of T-cell activation well beyond viral clearance and detect EBOV-specific T cells. Our study provides significant insights into lymphocyte specificity during the recovery phase of EVD and may inform novel strategies to treat EVD.


Asunto(s)
Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/inmunología , Inmunidad Celular , Humanos , Activación de Linfocitos , Linfocitos T/inmunología
17.
PLoS Med ; 14(10): e1002402, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28985239

RESUMEN

BACKGROUND: The rVSVΔG-ZEBOV-GP vaccine prevented Ebola virus disease when used at 2 × 107 plaque-forming units (PFU) in a trial in Guinea. This study provides further safety and immunogenicity data. METHODS AND FINDINGS: A randomised, open-label phase I trial in Lambaréné, Gabon, studied 5 single intramuscular vaccine doses of 3 × 103, 3 × 104, 3 × 105, 3 × 106, or 2 × 107 PFU in 115 adults and a dose of 2 × 107 PFU in 20 adolescents and 20 children. The primary objective was safety and tolerability 28 days post-injection. Immunogenicity, viraemia, and shedding post-vaccination were evaluated as secondary objectives. In adults, mild-to-moderate adverse events were frequent, but there were no serious or severe adverse events related to vaccination. Before vaccination, Zaire Ebola virus (ZEBOV)-glycoprotein (GP)-specific and ZEBOV antibodies were detected in 11% and 27% of adults, respectively. In adults, 74%-100% of individuals who received a dose 3 × 104, 3 × 105, 3 × 106, or 2 × 107 PFU had a ≥4.0-fold increase in geometric mean titres (GMTs) of ZEBOV-GP-specific antibodies at day 28, reaching GMTs of 489 (95% CI: 264-908), 556 (95% CI: 280-1,101), 1,245 (95% CI: 899-1,724), and 1,503 (95% CI: 931-2,426), respectively. Twenty-two percent of adults had a ≥4-fold increase of ZEBOV antibodies, with GMTs at day 28 of 1,015 (647-1,591), 1,887 (1,154-3,085), 1,445 (1,013-2,062), and 3,958 (2,249-6,967) for the same doses, respectively. These antibodies persisted up to day 180 for doses ≥3 × 105 PFU. Adults with antibodies before vaccination had higher GMTs throughout. Neutralising antibodies were detected in more than 50% of participants at doses ≥3 × 105 PFU. As in adults, no serious or severe adverse events related to vaccine occurred in adolescents or children. At day 2, vaccine RNA titres were higher for adolescents and children than adults. At day 7, 78% of adolescents and 35% of children had recombinant vesicular stomatitis virus RNA detectable in saliva. The vaccine induced high GMTs of ZEBOV-GP-specific antibodies at day 28 in adolescents, 1,428 (95% CI: 1,025-1,989), and children, 1,620 (95% CI: 806-3,259), and in both groups antibody titres increased up to day 180. The absence of a control group, lack of stratification for baseline antibody status, and imbalances in male/female ratio are the main limitations of this study. CONCLUSIONS: Our data confirm the acceptable safety and immunogenicity profile of the 2 × 107 PFU dose in adults and support consideration of lower doses for paediatric populations and those who request boosting. TRIAL REGISTRATION: Pan African Clinical Trials Registry PACTR201411000919191.


Asunto(s)
Inmunidad Adaptativa/efectos de los fármacos , Vacunas contra el Virus del Ébola/administración & dosificación , Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/prevención & control , Inmunogenicidad Vacunal , Adolescente , Adulto , Factores de Edad , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Biomarcadores/sangre , Niño , Vacunas contra el Virus del Ébola/efectos adversos , Vacunas contra el Virus del Ébola/inmunología , Femenino , Gabón , Fiebre Hemorrágica Ebola/diagnóstico , Fiebre Hemorrágica Ebola/inmunología , Fiebre Hemorrágica Ebola/virología , Humanos , Inyecciones Intramusculares , Masculino , Persona de Mediana Edad , Factores de Tiempo , Resultado del Tratamiento , Vacunación , Esparcimiento de Virus , Adulto Joven
18.
J Gen Virol ; 98(10): 2447-2453, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28984239

RESUMEN

Highly pathogenic Nipah virus (NiV) generally causes severe encephalitis in humans. Respiratory symptoms are infrequently observed, likely reflecting variations in infection kinetics in human airways. Supporting this idea, we recently identified individual differences in NiV replication kinetics in cultured airway epithelia from different human donors. As type III interferons (IFN-λ) represent major players in the defence mechanism against viral infection of the respiratory mucosa, we studied IFN-λ induction and antiviral activity in NiV-infected primary differentiated human bronchial epithelial cells (HBEpCs) cultured under air-liquid interface conditions. Our studies revealed that IFN-λ was upregulated in airway epithelia upon NiV infection. We also show that IFN-λ pretreatment efficiently inhibited NiV replication. Interestingly, the antiviral activity of IFN-λ varied in HBEpCs from two different donors. Increased sensitivity to IFN-λ was associated with higher expression levels of IFN-λ receptors, enhanced phosphorylation of STAT1, as well as enhanced induction of interferon-stimulated gene expression. These findings suggest that individual variations in IFN-λ receptor expression affecting IFN responsiveness can play a functional role for NiV replication kinetics in human respiratory epithelial cells of different donors.


Asunto(s)
Bronquios/inmunología , Células Epiteliales/inmunología , Interferones/biosíntesis , Interferones/farmacología , Virus Nipah/inmunología , Receptores de Interferón/biosíntesis , Mucosa Respiratoria/inmunología , Animales , Bronquios/citología , Bronquios/virología , Línea Celular , Chlorocebus aethiops , Células Epiteliales/virología , Humanos , Fosforilación , Mucosa Respiratoria/citología , Mucosa Respiratoria/virología , Factor de Transcripción STAT1/metabolismo , Células Vero , Replicación Viral/efectos de los fármacos
19.
J Infect Dis ; 213(7): 1124-33, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26715676

RESUMEN

The highly glycosylated glycoprotein spike of Ebola virus (EBOV-GP1,2) is the primary target of the humoral host response. Recombinant EBOV-GP ectodomain (EBOV-GP1,2ecto) expressed in mammalian cells was used to immunize sheep and elicited a robust immune response and produced high titers of high avidity polyclonal antibodies. Investigation of the neutralizing activity of the ovine antisera in vitro revealed that it neutralized EBOV. A pool of intact ovine immunoglobulin G, herein termed EBOTAb, was prepared from the antisera and used for an in vivo guinea pig study. When EBOTAb was delivered 6 hours after challenge, all animals survived without experiencing fever or other clinical manifestations. In a second series of guinea pig studies, the administration of EBOTAb dosing was delayed for 48 or 72 hours after challenge, resulting in 100% and 75% survival, respectively. These studies illustrate the usefulness of EBOTAb in protecting against EBOV-induced disease.


Asunto(s)
Anticuerpos Antivirales/uso terapéutico , Ebolavirus/fisiología , Glicoproteínas/inmunología , Fiebre Hemorrágica Ebola/terapia , Inmunoglobulina G/uso terapéutico , Glicoproteínas de Membrana/metabolismo , Animales , Anticuerpos Antivirales/economía , Análisis Costo-Beneficio , Ebolavirus/inmunología , Femenino , Regulación Viral de la Expresión Génica , Cobayas , Células HEK293 , Fiebre Hemorrágica Ebola/economía , Humanos , Inmunoglobulina G/economía , Glicoproteínas de Membrana/inmunología , Unión Proteica , Estructura Terciaria de Proteína , Ovinos , Carga Viral
20.
J Infect Dis ; 214(suppl 3): S250-S257, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27638946

RESUMEN

BACKGROUND: A unit of the European Mobile Laboratory (EMLab) consortium was deployed to the Ebola virus disease (EVD) treatment unit in Guéckédou, Guinea, from March 2014 through March 2015. METHODS: The unit diagnosed EVD and malaria, using the RealStar Filovirus Screen reverse transcription-polymerase chain reaction (RT-PCR) kit and a malaria rapid diagnostic test, respectively. RESULTS: The cleaned EMLab database comprised 4719 samples from 2741 cases of suspected EVD from Guinea. EVD was diagnosed in 1231 of 2178 hospitalized patients (57%) and in 281 of 563 who died in the community (50%). Children aged <15 years had the highest proportion of Ebola virus-malaria parasite coinfections. The case-fatality ratio was high in patients aged <5 years (80%) and those aged >74 years (90%) and low in patients aged 10-19 years (40%). On admission, RT-PCR analysis of blood specimens from patients who died in the hospital yielded a lower median cycle threshold (Ct) than analysis of blood specimens from survivors (18.1 vs 23.2). Individuals who died in the community had a median Ct of 21.5 for throat swabs. Multivariate logistic regression on 1047 data sets revealed that low Ct values, ages of <5 and ≥45 years, and, among children aged 5-14 years, malaria parasite coinfection were independent determinants of a poor EVD outcome. CONCLUSIONS: Virus load, age, and malaria parasite coinfection play a role in the outcome of EVD.


Asunto(s)
Ebolavirus/aislamiento & purificación , Epidemias , Infecciones por Filoviridae/diagnóstico , Fiebre Hemorrágica Ebola/diagnóstico , Malaria/complicaciones , Unidades Móviles de Salud , Adolescente , Adulto , Anciano , Niño , Preescolar , Servicios de Laboratorio Clínico , Ebolavirus/genética , Femenino , Filoviridae , Infecciones por Filoviridae/complicaciones , Infecciones por Filoviridae/virología , Guinea , Fiebre Hemorrágica Ebola/complicaciones , Fiebre Hemorrágica Ebola/virología , Humanos , Lactante , Malaria/parasitología , Masculino , Persona de Mediana Edad , ARN Viral/sangre , Carga Viral , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA