Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Biol Chem ; 285(10): 7300-11, 2010 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-20023287

RESUMEN

Comparative gene identification-58 (CGI-58), also designated as alpha/beta-hydrolase domain containing-5 (ABHD-5), is a lipid droplet-associated protein that activates adipose triglyceride lipase (ATGL) and acylates lysophosphatidic acid. Activation of ATGL initiates the hydrolytic catabolism of cellular triacylglycerol (TG) stores to glycerol and nonesterified fatty acids. Mutations in both ATGL and CGI-58 cause "neutral lipid storage disease" characterized by massive accumulation of TG in various tissues. The analysis of CGI-58-deficient (Cgi-58(-/-)) mice, presented in this study, reveals a dual function of CGI-58 in lipid metabolism. First, systemic TG accumulation and severe hepatic steatosis in newborn Cgi-58(-/-) mice establish a limiting role for CGI-58 in ATGL-mediated TG hydrolysis and supply of nonesterified fatty acids as energy substrate. Second, a severe skin permeability barrier defect uncovers an essential ATGL-independent role of CGI-58 in skin lipid metabolism. The neonatal lethal skin barrier defect is linked to an impaired hydrolysis of epidermal TG. As a consequence, sequestration of fatty acids in TG prevents the synthesis of acylceramides, which are essential lipid precursors for the formation of a functional skin permeability barrier. This mechanism may also underlie the pathogenesis of ichthyosis in neutral lipid storage disease patients lacking functional CGI-58.


Asunto(s)
1-Acilglicerol-3-Fosfato O-Aciltransferasa , Hígado Graso/metabolismo , Retardo del Crecimiento Fetal/fisiopatología , Piel , Triglicéridos/metabolismo , 1-Acilglicerol-3-Fosfato O-Aciltransferasa/genética , 1-Acilglicerol-3-Fosfato O-Aciltransferasa/metabolismo , Animales , Animales Recién Nacidos , Animales Lactantes/fisiología , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Hígado Graso/genética , Fibroblastos/citología , Fibroblastos/fisiología , Humanos , Ictiosis/genética , Ictiosis/metabolismo , Ictiosis/patología , Lipasa/genética , Lipasa/metabolismo , Hígado/enzimología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Permeabilidad , Piel/química , Piel/patología , Piel/fisiopatología , Síndrome
2.
J Neurochem ; 119(5): 1016-28, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21951135

RESUMEN

Currently, little is known about the role of intracellular triacylglycerol (TAG) lipases in the brain. Adipose triglyceride lipase (ATGL) is encoded by the PNPLA2 gene and catalyzes the rate-limiting step of lipolysis. In this study, we investigated the effects of ATGL deficiency on brain lipid metabolism in vivo using an established knock-out mouse model (ATGL-ko). A moderate decrease in TAG hydrolase activity detected in ATGL-ko versus wild-type brain tissue was accompanied by a 14-fold increase in TAG levels and an altered composition of TAG-associated fatty acids in ATGL-ko brains. Oil Red O staining revealed a severe accumulation of neutral lipids associated to cerebrovascular cells and in distinct brain regions namely the ependymal cell layer and the choroid plexus along the ventricular system. In situ hybridization histochemistry identified ATGL mRNA expression in ependymal cells, the choroid plexus, pyramidal cells of the hippocampus, and the dentate gyrus. Our findings imply that ATGL is involved in brain fatty acid metabolism, particularly in regions mediating transport and exchange processes: the brain-CSF interface, the blood-CSF barrier, and the blood-brain barrier.


Asunto(s)
Barrera Hematoencefálica/enzimología , Encéfalo/enzimología , Lipasa/fisiología , Metabolismo de los Lípidos , Animales , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Femenino , Lipasa/deficiencia , Lipasa/genética , Metabolismo de los Lípidos/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Triglicéridos/metabolismo
3.
J Biol Chem ; 284(44): 30218-29, 2009 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-19723629

RESUMEN

Triacylglycerol accumulation in insulin target tissues is associated with insulin resistance. Paradoxically, mice with global targeted deletion of adipose triglyceride lipase (ATGL), the rate-limiting enzyme in triacylglycerol hydrolysis, display improved glucose tolerance and insulin sensitivity despite triacylglycerol accumulation in multiple tissues. To determine the molecular mechanisms for this phenotype, ATGL-deficient (ATGL(-/-)) and wild-type mice were injected with saline or insulin (10 units/kg, intraperitoneally), and then phosphorylation and activities of key insulin-signaling proteins were determined in insulin target tissues (liver, adipose tissue, and muscle). Insulin signaling and/or glucose transport was also evaluated in isolated adipocytes and skeletal muscle ex vivo. In ATGL(-/-) mice, insulin-stimulated phosphatidylinositol 3-kinase and Akt activities as well as phosphorylation of critical residues of IRS1 (Tyr(P)-612) and Akt (Ser(P)-473) were increased in skeletal muscle in vivo. Insulin-stimulated phosphatidylinositol 3-kinase activity and total insulin receptor and insulin receptor substrate 1, but not other parameters, were also increased in white adipose tissue in vivo. In contrast, in vivo measures of insulin signaling were decreased in brown adipose tissue and liver. Interestingly, the enhanced components of insulin signaling identified in skeletal muscle and white adipose tissue in vivo and their expected downstream effects on glucose transport were not present ex vivo. ATGL deficiency altered intramyocellular lipids as well as serum factors known to influence insulin sensitivity. Thus, skeletal muscle, rather than other tissues, primarily contributes to enhanced insulin sensitivity in ATGL(-/-) mice in vivo despite triacylglycerol accumulation, and both local and systemic factors contribute to tissue-specific effects of global ATGL deficiency on insulin action.


Asunto(s)
Tejido Adiposo/patología , Insulina/metabolismo , Lipasa/deficiencia , Transducción de Señal , Tejido Adiposo/metabolismo , Animales , Resistencia a la Insulina , Ratones , Ratones Noqueados , Músculo Esquelético , Distribución Tisular , Triglicéridos/metabolismo
4.
Chem Phys Lipids ; 189: 39-47, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26028612

RESUMEN

The oxidized phospholipids (oxPL) 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC) and 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC) are generated from 1-palmitoyl-2-arachidonoyl-phosphatidylcholine under conditions of oxidative stress. These oxPL are components of oxidized low density lipoprotein. They are cytotoxic in cells of the arterial wall thus playing an important role in the development and progression of atherosclerosis. The toxic lipid effects include inflammation and under sustained exposure apoptosis. The aim of this study was to find out whether such toxic effects, especially apoptosis, are also elicited by oxPL in melanocytic cells in order to assess their potential for therapeutic intervention. FACS analysis after staining with fluorescent markers was performed to identify the mode of lipid-induced cell death. Activation of sphingomyelinase which generates apoptotic ceramide was measured using an established fluorescence assay. Ceramide profiles were determined by mass spectrometry. We found that 50µM POVPC induce cell death in human melanoma cells isolated from different stages of tumor progression but affect primary human melanocytes to a much lesser extent. In contrast, 50µM PGPC was only apoptotic in two out of four cell lines used in this study. The toxicity of both compounds was associated with efficient lipid uptake into the tumor cells and activation of acid sphingomyelinase. In several but not all melanoma cell lines used in this study, activation of the sphingomyelin degrading enzyme correlated with an increase in the concentration of the apoptotic mediator ceramide. The individual patterns of the newly formed ceramide species were also cell line-specific. PGPC and POVPC may be considered potential drug candidates for topical skin cancer treatment. They are toxic in malignant cells. The respective oxidized phospholipids are naturally formed in the body and resistance to these compounds is not likely to occur.


Asunto(s)
Apoptosis/efectos de los fármacos , Lipoproteínas LDL/toxicidad , Fosfatidilcolinas/química , Compuestos de Boro/química , Línea Celular Tumoral , Ceramidas/análisis , Cromatografía Líquida de Alta Presión , Cromatografía de Fase Inversa , Humanos , Lipoproteínas LDL/química , Melanoma/metabolismo , Melanoma/patología , Microscopía Fluorescente , Oxidación-Reducción , Éteres Fosfolípidos/química , Éteres Fosfolípidos/toxicidad , Esfingomielina Fosfodiesterasa/metabolismo
5.
J Biol Chem ; 283(35): 23989-99, 2008 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-18591246

RESUMEN

In eukaryotes, S-adenosyl-L-homocysteine hydrolase (Sah1) offers a single way for degradation of S-adenosyl-L-homocysteine, a product and potent competitive inhibitor of S-adenosyl-L-methionine (AdoMet)-dependent methyltransferases. De novo phosphatidylcholine (PC) synthesis requires three AdoMet-dependent methylation steps. Here we show that down-regulation of SAH1 expression in yeast leads to accumulation of S-adenosyl-L-homocysteine and decreased de novo PC synthesis in vivo. This decrease is accompanied by an increase in triacylglycerol (TG) levels, demonstrating that Sah1-regulated methylation has a major impact on cellular lipid homeostasis. TG accumulation is also observed in cho2 and opi3 mutants defective in methylation of phosphatidylethanolamine to PC, confirming that PC de novo synthesis and TG synthesis are metabolically coupled through the efficiency of the phospholipid methylation reaction. Indeed, because both types of lipids share phosphatidic acid as a precursor, we find in cells with down-regulated Sah1 activity major alterations in the expression of the INO1 gene as well as in the localization of Opi1, a negative regulatory factor of phospholipid synthesis, which binds and is retained in the endoplasmic reticulum membrane by phosphatidic acid in conjunction with VAMP/synaptobrevin-associated protein, Scs2. The addition of homocysteine, by the reversal of the Sah1-catalyzed reaction, also leads to TG accumulation in yeast, providing an attractive model for the role of homocysteine as a risk factor of atherosclerosis in humans.


Asunto(s)
Adenosilhomocisteinasa/biosíntesis , Aterosclerosis/enzimología , Regulación Enzimológica de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Fosfatidilcolinas/biosíntesis , Saccharomyces cerevisiae/enzimología , Triglicéridos/biosíntesis , Adenosilhomocisteinasa/genética , Aterosclerosis/genética , Regulación hacia Abajo/genética , Retículo Endoplásmico/enzimología , Retículo Endoplásmico/genética , Regulación Enzimológica de la Expresión Génica/genética , Regulación Fúngica de la Expresión Génica/genética , Homeostasis/genética , Homocisteína/genética , Homocisteína/metabolismo , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Metilación , Mio-Inositol-1-Fosfato Sintasa/biosíntesis , Mio-Inositol-1-Fosfato Sintasa/genética , Fosfatidilcolinas/genética , Fosfatidiletanolamina N-Metiltransferasa/biosíntesis , Fosfatidiletanolamina N-Metiltransferasa/genética , Proteínas Represoras/biosíntesis , Proteínas Represoras/genética , Factores de Riesgo , S-Adenosilhomocisteína/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Triglicéridos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA