Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Am Chem Soc ; 143(7): 2741-2750, 2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33399469

RESUMEN

Perovskite oxides are an important class of oxygen evolution reaction (OER) catalysts in alkaline media, despite the elusive nature of their active sites. Here, we demonstrate that the origin of the OER activity in a La1-xSrxCoO3 model perovskite arises from a thin surface layer of Co hydr(oxy)oxide (CoOxHy) that interacts with trace-level Fe species present in the electrolyte, creating dynamically stable active sites. Generation of the hydr(oxy)oxide layer is a consequence of a surface evolution process driven by the A-site dissolution and O-vacancy creation. In turn, this imparts a 10-fold improvement in stability against Co dissolution and a 3-fold increase in the activity-stability factor for CoOxHy/LSCO when compared to nanoscale Co-hydr(oxy)oxides clusters. Our results suggest new design rules for active and stable perovskite oxide-based OER materials.

2.
Nat Mater ; 19(11): 1207-1214, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32690912

RESUMEN

A remaining challenge for the deployment of proton-exchange membrane fuel cells is the limited durability of platinum (Pt) nanoscale materials that operate at high voltages during the cathodic oxygen reduction reaction. In this work, atomic-scale insight into well-defined single-crystalline, thin-film and nanoscale surfaces exposed Pt dissolution trends that governed the design and synthesis of durable materials. A newly defined metric, intrinsic dissolution, is essential to understanding the correlation between the measured Pt loss, surface structure, size and ratio of Pt nanoparticles in a carbon (C) support. It was found that the utilization of a gold (Au) underlayer promotes ordering of Pt surface atoms towards a (111) structure, whereas Au on the surface selectively protects low-coordinated Pt sites. This mitigation strategy was applied towards 3 nm Pt3Au/C nanoparticles and resulted in the elimination of Pt dissolution in the liquid electrolyte, which included a 30-fold durability improvement versus 3 nm Pt/C over an extended potential range up to 1.2 V.

4.
Nat Mater ; 16(1): 57-69, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27994237

RESUMEN

Advances in electrocatalysis at solid-liquid interfaces are vital for driving the technological innovations that are needed to deliver reliable, affordable and environmentally friendly energy. Here, we highlight the key achievements in the development of new materials for efficient hydrogen and oxygen production in electrolysers and, in reverse, their use in fuel cells. A key issue addressed here is the degree to which the fundamental understanding of the synergy between covalent and non-covalent interactions can form the basis for any predictive ability in tailor-making real-world catalysts. Common descriptors such as the substrate-hydroxide binding energy and the interactions in the double layer between hydroxide-oxides and H---OH are found to control individual parts of the hydrogen and oxygen electrochemistry that govern the efficiency of water-based energy conversion and storage systems. Links between aqueous- and organic-based environments are also established, encouraging the 'fuel cell' and 'battery' communities to move forward together.

5.
Nat Mater ; 15(2): 197-203, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26618882

RESUMEN

Three of the fundamental catalytic limitations that have plagued the electrochemical production of hydrogen for decades still remain: low efficiency, short lifetime of catalysts and a lack of low-cost materials. Here, we address these three challenges by establishing and exploring an intimate functional link between the reactivity and stability of crystalline (CoS2 and MoS2) and amorphous (CoSx and MoSx) hydrogen evolution catalysts. We propose that Co(2+) and Mo(4+) centres promote the initial discharge of water (alkaline solutions) or hydronium ions (acid solutions). We establish that although CoSx materials are more active than MoSx they are also less stable, suggesting that the active sites are defects formed after dissolution of Co and Mo cations. By combining the higher activity of CoSx building blocks with the higher stability of MoSx units into a compact and robust CoMoSx chalcogel structure, we are able to design a low-cost alternative to noble metal catalysts for efficient electrocatalytic production of hydrogen in both alkaline and acidic environments.

6.
Angew Chem Int Ed Engl ; 53(51): 14016-21, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25297010

RESUMEN

The methods used to improve catalytic activity are well-established, however elucidating the factors that simultaneously control activity and stability is still lacking, especially for oxygen evolution reaction (OER) catalysts. Here, by studying fundamental links between the activity and stability of well-characterized monometallic and bimetallic oxides, we found that there is generally an inverse relationship between activity and stability. To overcome this limitation, we developed a new synthesis strategy that is based on tuning the near-surface composition of Ru and Ir elements by surface segregation, thereby resulting in the formation of a nanosegregated domain that balances the stability and activity of surface atoms. We demonstrate that a Ru0.5Ir0.5 alloy synthesized by using this method exhibits four-times higher stability than the best Ru-Ir oxygen evolution reaction materials, while still preserving the same activity.

7.
Nat Mater ; 11(6): 550-7, 2012 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-22561903

RESUMEN

Design and synthesis of materials for efficient electrochemical transformation of water to molecular hydrogen and of hydroxyl ions to oxygen in alkaline environments is of paramount importance in reducing energy losses in water-alkali electrolysers. Here, using 3d-M hydr(oxy)oxides, with distinct stoichiometries and morphologies in the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) regions, we establish the overall catalytic activities for these reaction as a function of a more fundamental property, a descriptor, OH-M(2+δ) bond strength (0 ≤ δ ≤ 1.5). This relationship exhibits trends in reactivity (Mn < Fe < Co < Ni), which is governed by the strength of the OH-M(2+δ) energetic (Ni < Co < Fe < Mn). These trends are found to be independent of the source of the OH, either the supporting electrolyte (for the OER) or the water dissociation product (for the HER). The successful identification of these electrocatalytic trends provides the foundation for rational design of 'active sites' for practical alkaline HER and OER electrocatalysts.

8.
Nat Mater ; 11(12): 1051-8, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23142838

RESUMEN

Among the most challenging issues in technologies for electrochemical energy conversion are the insufficient activity of the catalysts for the oxygen reduction reaction, catalyst degradation and carbon-support corrosion. In an effort to address these barriers, we aimed towards carbon-free multi/bimetallic materials in the form of mesostructured thin films with tailored physical properties. We present here a new class of metallic materials with tunable near-surface composition, morphology and structure that have led to greatly improved affinity for the electrochemical reduction of oxygen. The level of activity for the oxygen reduction reaction established on mesostructured thin-film catalysts exceeds the highest value reported for bulk polycrystalline Pt bimetallic alloys, and is 20-fold more active than the present state-of-the-art Pt/C nanoscale catalyst.

9.
Nano Lett ; 11(3): 919-26, 2011 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-20704335

RESUMEN

We report the design and synthesis of multimetallic Au/Pt-bimetallic nanoparticles as a highly durable electrocatalyst for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells. This system was first studied on well-defined Pt and FePt thin films deposited on a Au(111) surface, which has guided the development of novel synthetic routes toward shape-controlled Au nanoparticles coated with a Pt-bimetallic alloy. It has been demonstrated that these multimetallic Au/FePt(3) nanoparticles possess both the high catalytic activity of Pt-bimetallic alloys and the superior durability of the tailored morphology and composition profile, with mass-activity enhancement of more than 1 order of magnitude over Pt catalysts. The reported synergy between well-defined surfaces and nanoparticle synthesis offers a persuasive approach toward advanced functional nanomaterials.

10.
J Am Chem Soc ; 133(36): 14396-403, 2011 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-21770417

RESUMEN

Advancement in heterogeneous catalysis relies on the capability of altering material structures at the nanoscale, and that is particularly important for the development of highly active electrocatalysts with uncompromised durability. Here, we report the design and synthesis of a Pt-bimetallic catalyst with multilayered Pt-skin surface, which shows superior electrocatalytic performance for the oxygen reduction reaction (ORR). This novel structure was first established on thin film extended surfaces with tailored composition profiles and then implemented in nanocatalysts by organic solution synthesis. Electrochemical studies for the ORR demonstrated that after prolonged exposure to reaction conditions, the Pt-bimetallic catalyst with multilayered Pt-skin surface exhibited an improvement factor of more than 1 order of magnitude in activity versus conventional Pt catalysts. The substantially enhanced catalytic activity and durability indicate great potential for improving the material properties by fine-tuning of the nanoscale architecture.

11.
Nat Mater ; 9(12): 998-1003, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21037564

RESUMEN

The design of new catalysts for polymer electrolyte membrane fuel cells must be guided by two equally important fundamental principles: optimization of their catalytic behaviour as well as the long-term stability of the metal catalysts and supports in hostile electrochemical environments. The methods used to improve catalytic activity are diverse, ranging from the alloying and de-alloying of platinum to the synthesis of platinum core-shell catalysts. However, methods to improve the stability of the carbon supports and catalyst nanoparticles are limited, especially during shutdown (when hydrogen is purged from the anode by air) and startup (when air is purged from the anode by hydrogen) conditions when the cathode potential can be pushed up to 1.5 V (ref. 11). Under the latter conditions, stability of the cathode materials is strongly affected (carbon oxidation reaction) by the undesired oxygen reduction reaction (ORR) on the anode side. This emphasizes the importance of designing selective anode catalysts that can efficiently suppress the ORR while fully preserving the Pt-like activity for the hydrogen oxidation reaction. Here, we demonstrate that chemically modified platinum with a self-assembled monolayer of calix[4]arene molecules meets this challenging requirement.

12.
ACS Appl Mater Interfaces ; 13(2): 3369-3376, 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33404211

RESUMEN

The feasible commercialization of alkaline, phosphoric acid and polymer electrolyte membrane fuel cells depends on the development of oxygen reduction reaction (ORR) electrocatalysts with improved activity, stability, and selectivity. The rational design of surfaces to ensure these improved ORR catalytic requirements relies on the so-called "descriptors" (e.g., the role of covalent and noncovalent interactions on platinum surface active sites for ORR). Here, we demonstrate that through the molecular adsorption of melamine onto the Pt(111) surface [Pt(111)-Mad], the activity can be improved by a factor of 20 compared to bare Pt(111) for the ORR in a strongly adsorbing sulfuric acid solution. The Mad moieties act as "surface-blocking bodies," selectively hindering the adsorption of (bi)sulfate anions (well-known poisoning spectator of the Pt(111) active sites) while the ORR is unhindered. This modified surface is further demonstrated to exhibit improved chemical stability relative to Pt(111) patterned with cyanide species (CNad), previously shown by our group to have a similar ORR activity increase compared to bare Pt(111) in a sulfuric acid electrolyte, with Pt(111)-Mad retaining a greater than ninefold higher ORR activity relative to bare Pt(111) after extensive potential cycling as compared to a greater than threefold higher activity retained on a CNad-covered Pt(111) surface. We suggest that the higher stability of the Pt(111)-Mad interface stems from melamine's ability to form intermolecular hydrogen bonds, which effectively turns the melamine molecules into larger macromolecular entities with multiple anchoring sites and thus more difficult to remove.

13.
J Am Chem Soc ; 132(45): 16127-33, 2010 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-20979396

RESUMEN

The role of alkali cations (Li(+), Na(+), K(+), Cs(+), and Be(2+)) on the blank voltammetric response and the oxidative stripping of carbon monoxide from stepped Pt single-crystal electrodes in alkaline media has been investigated by cyclic voltammetry. A strong influence of the nature of the cation on both the blank voltammetric profile and the CO oxidation is observed and related to the influence of the cation on the specific adsorption of OH on the platinum surface. Especially Li(+) and Be(2+) cations markedly affect the adsorption of OH and thereby have a significant promoting effect on CO(ads) oxidation. The voltammetric experiments suggest that, on Pt(111), the influence of Li(+) (and Be(2+)) is primarily through a weakening of the repulsive interactions between the OH in the OH adlayer, whereas in the presence of steps also, the onset of OH adsorption is at a lower potential, both on steps and on terraces.

14.
Chemphyschem ; 11(13): 2825-33, 2010 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-20648513

RESUMEN

The kinetics of the oxygen reduction reaction (ORR) is studied at metal-supporting electrolyte-Nafion three-phase interfaces. We first demonstrate that the sulfonate anions of Nafion are specifically adsorbed on a wide range of surfaces ranging from Pt(hkl) single-crystal surfaces, Pt-poly, Pt-skin [produced on a Pt(3)Ni(111) surface by annealing in ultrahigh vacuum, UHV] to high-surface-area nanostructured thin-film (NSTF) catalysts. The surface coverage by sulfonate and the strength of the Pt-sulfonate interaction are strongly dependent on the geometry and the nature of the Pt surface atoms. Also, they are found to behave analogous to (bi)sulfate anion-specific adsorption on these surfaces, where for the Pt(hkl) surfaces, the trend is Pt(111)>Pt(110)>Pt(100) and for the Pt-skin surface on Pt(3)Ni(111), the interaction strength is found to be Pt-skin

Asunto(s)
Polímeros de Fluorocarbono/química , Níquel/química , Oxígeno/química , Platino (Metal)/química , Ácidos Sulfónicos/química , Adsorción , Electrodos , Electrólitos/química , Cinética , Membranas Artificiales , Oxidación-Reducción , Propiedades de Superficie
15.
ACS Appl Mater Interfaces ; 12(32): 36137-36147, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32667178

RESUMEN

Developing next-generation battery chemistries that move beyond traditional Li-ion systems is critical to enabling transformative advances in electrified transportation and grid-level energy storage. In this work, we provide the first evidence for common descriptors for improved reversibility of metal plating/stripping in nonaqueous electrolytes for multivalent ion batteries. Focusing first on the specific role of chloride (Cl-) in promoting electrochemical reversibility in multivalent systems, rotating disk (RDE) and ring-disk electrode (RRDE) investigations were performed utilizing a variety of divalent cations (Mg2+, Zn2+, and Cu2+) and the bis-(trifluoromethane sulfonyl) imide (TFSI-) anion. By introducing varying concentrations of Cl-, a cooperative effect is observed between TFSI- and Cl- that yields the more reversible behavior of mixed electrolytes relative to electrolytes containing only TFSI-. This effect is shown to be general for Mg, Zn, and Cu electrodeposition, and mechanistic understanding of the role of Cl- in improving reversibility of TFSI-based electrolytes is obtained through the combination of R(R)DE experimental results and density functional theory (DFT) evaluation of the redox activity and thermodynamic stability of various TFSI- and Cl-based solution complexes of metal ions. The cooperative anion effect is further generalized to other mixed-anion systems, where systematic variations in anion association strength predicted from DFT (i.e., Cl- > OTf- ≈ TFSI- > BF4- > PF6-) yield corresponding trends in redox potentials and improvements of ≥200 mV in the reversibility of metal deposition/dissolution. These results identify anion association strength as a common descriptor for the reversibility of divalent metal anodes and suggest a set of general design principles for developing new electrolytes with improved activity and stability.

16.
Chem Sci ; 11(15): 3914-3922, 2020 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-34122861

RESUMEN

By combining idealized experiments with realistic quantum mechanical simulations of an interface, we investigate electro-reduction reactions of HF, water and methanesulfonic acid (MSA) on the single crystal (111) facets of Au, Pt, Ir and Cu in organic aprotic electrolytes, 1 M LiPF6 in EC/EMC 3:7W (LP57), the aprotic electrolyte commonly used in Li-ion batteries, 1 M LiClO4 in EC/EMC 3:7W and 0.2 M TBAPF6 in 3 : 7 EC/EMC. In our previous work, we have established that LiF formation, accompanied by H2 evolution, is caused by a reduction of HF impurities and requires the presence of Li at the interface, which catalyzes the HF dissociation. In the present paper, we find that the measured potential of the electrochemical response for these reduction reactions correlates with the work function of the electrode surfaces and that the work function determines the potential for Li+ adsorption. The reaction path is investigated further by electrochemical simulations suggesting that the overpotential of the reaction is related to stabilizing the active structure of the interface having adsorbed Li+. Li+ is needed to facilitate the dissociation of HF which is the source of protons. Further experiments on other proton sources, water and methanesulfonic acid, show that if the hydrogen evolution involves negatively charged intermediates, F- or HO-, a cation at the interface can stabilize them and facilitate the reaction kinetics. When the proton source is already significantly dissociated (in the case of a strong acid), there is no negatively charged intermediate and thus the hydrogen evolution can proceed at much lower overpotentials. This reveals a situation where the overpotential for electrocatalysis is related to stabilizing the active structure of the interface, facilitating the reaction rather than providing the reaction energy.

17.
J Am Chem Soc ; 131(22): 7654-61, 2009 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-19489644

RESUMEN

The influence of temperature changes in water-based electrolytes on the atomic structure at the electrochemical interface has been studied using in situ surface X-ray scattering (SXS) in combination with cyclic voltammetry. Results are presented for the potential-dependent surface reconstruction of Au(100), the adsorption and ordering of bromide anions on the Au(100) surface, and the adsorption and oxidation of CO on Pt(111) in pure HClO(4) and in the presence of anions. These systems represent a range of structural phenomena, namely metal surface restructuring and ordering transitions in both nonreactive spectator species and reactive adsorbate layers. The key effect of temperature appears to be in controlling the kinetics of the surface reactions that involve oxygenated species, such as hydroxyl adsorption and oxide formation. The results indicate that temperature effects should be considered in the determination of structure-function relationships in many important electrochemical systems.

18.
ACS Appl Mater Interfaces ; 11(37): 34517-34525, 2019 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-31430112

RESUMEN

Engineered solid-liquid interfaces will play an important role in the development of future energy storage and conversion (ESC) devices. In the present study, defective graphene oxide (GO) and reduced graphene oxide (rGO) structures were used as engineered interfaces to tune the selectivity and activity of Pt disk electrodes. GO was deposited on Pt electrodes via the Langmuir-Blodgett technique, which provided compact and uniform GO films, and these films were subsequently converted to rGO by thermal reduction. Electrochemical measurements revealed that both GO and rGO interfaces on Pt electrodes exhibit selectivity toward the oxygen reduction reaction (ORR), but they do not have an impact on the activity of the hydrogen oxidation reaction in acidic environments. Scanning transmission electron microscopy at atomic resolution, along with Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM), revealed possible diffusion sites for H2 and O2 gas molecules and functional groups relevant to the selectivity and activity of these surfaces. Based on these insights, rGO interfaces are further demonstrated to exhibit enhanced activity for the ORR in nonaqueous environments and demonstrate the power of our ex situ engineering approach for the development of next-generation ESC devices.

19.
J Am Chem Soc ; 130(46): 15332-9, 2008 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-18942789

RESUMEN

The development of electrocatalytic materials of enhanced activity and efficiency through careful manipulation, at the atomic scale, of the catalyst surface structure has long been a goal of electrochemists. To accomplish this ambitious objective, it would be necessary both to obtain a thorough understanding of the relationship between the atomic-level surface structure and the catalytic properties and to develop techniques to synthesize and stabilize desired active sites. In this contribution, we present a combined experimental and theoretical study in which we demonstrate how this approach can be used to develop novel, platinum-based electrocatalysts for the CO electrooxidation reaction in CO(g)-saturated solution; the catalysts show activities superior to any pure-metal catalysts previously known. We use a broad spectrum of electrochemical surface science techniques to synthesize and rigorously characterize the catalysts, which are composed of adisland-covered platinum surfaces, and we show that highly undercoordinated atoms on the adislands themselves are responsible for the remarkable activity of these materials.

20.
J Phys Chem Lett ; 9(17): 4935-4940, 2018 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-30058338

RESUMEN

The future of high-voltage rechargeable batteries is closely tied to the fundamental understanding of the processes that lead to the potential-dependent degradation of electrode materials and organic electrolytes. To date, however, there have been no methods able to provide quantitative, in situ and in real time information about the electrode dissolution kinetics and concomitant electrolyte decomposition during charge/discharge. We describe the development of such a method, which is of both fundamental and technological significance. Our novel approach enables simultaneous and independent measurements of transition-metal cation dissolution rates from different oxide hosts (Co3+/4+ or Cr3+/4+), deintercalation kinetics of working cations (Mg2+), and the relative rate of electrolyte decomposition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA