RESUMEN
The hormone relaxin is considered a potential therapy for idiopathic pulmonary fibrosis (IPF). We have previously shown that a potential limitation to relaxin-based IPF therapy is decreased expression of a relaxin receptor, relaxin/insulin-like family peptide receptor 1 (RXFP1), in IPF fibroblasts. The mechanism that down-regulates RXFP1 in IPF remains unclear. To determine whether microRNAs (miRs) regulate RXFP1 gene expression, here we employed a bioinformatics approach to identify miRs predicted to target RXFP1 and identified a putative miR-144-3p target site in the RXFP1 mRNA. In situ hybridization of IPF lung biopsies revealed that miR-144-3p is expressed in fibroblastic foci. Furthermore, we found that miR-144-3p is up-regulated in IPF fibroblasts compared with lung fibroblasts from healthy donors. Transforming growth factor ß increased miR-144-3p expression in both healthy and IPF lung fibroblasts in a SMAD family 2/3 (SMAD2/3)-dependent manner, and Jun proto-oncogene AP-1 transcription factor subunit (AP-1) was required for constitutive miR-144-3p expression. Overexpression of an miR-144-3p mimic significantly reduced RXFP1 mRNA and protein levels and increased expression of the myofibroblast marker α-smooth muscle actin (α-SMA) in healthy lung fibroblasts. IPF lung fibroblasts transfected with anti-miR-144-3p had increased RXFP1 expression and reduced α-SMA expression. Of note, a lentiviral luciferase reporter carrying the WT 3' UTR of RXFP1 was significantly repressed in IPF lung fibroblasts, whereas a reporter carrying a mutated miR-144-3p-binding site exhibited less sensitivity toward endogenous miR-144-3p expression, indicating that miR-144-3p down-regulates RXFP1 in IPF lung fibroblasts by targeting its 3' UTR. We conclude that miR-144-3p directly represses RXFP1 mRNA and protein expression.
Asunto(s)
Fibroblastos/patología , Fibrosis Pulmonar Idiopática/genética , Pulmón/patología , MicroARNs/genética , Receptores Acoplados a Proteínas G/genética , Receptores de Péptidos/genética , Regiones no Traducidas 3' , Células Cultivadas , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Humanos , Fibrosis Pulmonar Idiopática/epidemiología , Fibrosis Pulmonar Idiopática/patología , Pulmón/metabolismo , Proto-Oncogenes Mas , ARN Mensajero/genéticaRESUMEN
Patients with idiopathic pulmonary fibrosis have a significantly increased risk for the development of lung cancer. The morbidity and mortality of this disease combination are substantial, and, unfortunately, there are currently few data to help guide clinicians in its diagnosis and treatment. In a recent issue of this journal, Hwang et al presented one of the first studies to evaluate lung cancer in patients with idiopathic pulmonary fibrosis at the molecular level. They demonstrate variants in regulators of the cell cycle, which are known to be important in malignant transformation and may also be important in the pathogenesis of idiopathic pulmonary fibrosis. Further understanding of the pathogenic overlap between lung cancer and idiopathic pulmonary fibrosis could help point the direction to specific diagnostic modalities and targeted treatment of both conditions in the future. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Asunto(s)
Fibrosis Pulmonar Idiopática , Neoplasias Pulmonares , Mycobacterium tuberculosis , Péptidos Catiónicos Antimicrobianos , Humanos , Reino Unido , CatelicidinasRESUMEN
BACKGROUND: Fibrosing mediastinitis (FM) is an idiosyncratic reaction to infection with Histoplasma capsulatum with a prevalence of 3:100,000 people infected. The rarity of post-histoplasmosis fibrosing mediastinitis (PHFM) in areas where H. capsulatum is endemic suggests that an abnormal immunological host response may be responsible for the development of fibrosis. Our group previously reported an association between subjects with PHFM and human leukocyte antigen (HLA)-A*02. We sought to confirm or extend those findings with application of high resolution HLA typing in a cohort of subjects with PHFM. METHODS: High-resolution HLA typing was performed on DNA samples from a new cohort 34 patients with PHFM. Control cohorts included 707 subjects from the "European American" subset of the National Marrow Donor Program(®) (NMDP) and 700 subjects from Dialysis Clinic, Inc. (DCI). The carriage frequencies of the HLA alleles identified in the PHFM, NMDP, and DCI cohorts were calculated and then all were compared. RESULTS: We found an increase in the carriage frequency of HLA-DQB1*04:02 in PHFM subjects relative to the controls (0.15 versus 0.07 in DCI and 0.05 in NMDP; p = 0.08 and 0.03). Multiple logistic regression showed that DQB1*04:02 was statistically significant (p = 0.04), while DQB1*03:02 and C*03:04 had point estimates of OR > 1, though they did not reach statistical significance. The HLA-A*02 association was not replicated. CONCLUSIONS: HLA-DQB1*04:02 is associated with PHFM, which supports the premise that an aberrant host immune response contributes to the development of PHFM.
Asunto(s)
Cadenas beta de HLA-DQ/genética , Histoplasma , Histoplasmosis/inmunología , Mediastinitis/inmunología , Esclerosis/inmunología , Adulto , Estudios de Casos y Controles , Estudios de Cohortes , Femenino , Frecuencia de los Genes , Cadenas beta de HLA-DQ/inmunología , Histoplasmosis/complicaciones , Humanos , Masculino , Mediastinitis/complicaciones , Reacción en Cadena de la Polimerasa , Prevalencia , Esclerosis/complicaciones , TennesseeRESUMEN
The 5'- and 3'-UTR regions in pre-mRNAs play a variety of roles in controlling eukaryotic gene expression, including translational modulation. Here we report the results of a systematic study of alternative splicing in rnp-4f, which encodes a Drosophila spliceosomal assembly factor. We show that most of the nine introns are constitutively spliced, but several patterns of alternative splicing are observed in two pre-mRNA regions including the 5'-UTR. Intron V is shown to be of recent evolutionary origin and is infrequently spliced, resulting in generation of an in-frame stop codon and a predicted truncated protein lacking a nuclear localization signal, so that alternative splicing regulates its subcellular localization. Intron 0, located in the 5'-UTR, is subject to three different splicing decisions in D. melanogaster. Northern analysis of poly(A+) mRNAs reveals two differently sized rnp-4f mRNA isoforms in this species. A switch in relative isoform abundance occurs during mid-embryo stages, when the larger isoform becomes more abundant. This isoform is shown to represent intron 0 unspliced mRNA, whereas the smaller transcript represents the product of alternative splicing. Comparative genomic analysis predicts that intron 0 is present in diverse Drosophila species. Intron 0 splicing results in loss of an evolutionarily conserved stem-loop constituting a potential cis-regulatory element at the 3'-splice site. A model is proposed for the role of this element both in 5'-UTR alternative splicing decisions and in RNP-4F translational modulation. Preliminary evidences in support of our model are discussed.