RESUMEN
KRAS is one of the most frequently mutated oncogenes in human cancer. Despite substantial efforts, no clinically applicable strategy has yet been developed to effectively treat KRAS-mutant tumors. Here, we perform a cell-line-based screen and identify strong synergistic interactions between cell-cycle checkpoint-abrogating Chk1- and MK2 inhibitors, specifically in KRAS- and BRAF-driven cells. Mechanistically, we show that KRAS-mutant cancer displays intrinsic genotoxic stress, leading to tonic Chk1- and MK2 activity. We demonstrate that simultaneous Chk1- and MK2 inhibition leads to mitotic catastrophe in KRAS-mutant cells. This actionable synergistic interaction is validated using xenograft models, as well as distinct Kras- or Braf-driven autochthonous murine cancer models. Lastly, we show that combined checkpoint inhibition induces apoptotic cell death in KRAS- or BRAF-mutant tumor cells directly isolated from patients. These results strongly recommend simultaneous Chk1- and MK2 inhibition as a therapeutic strategy for the treatment of KRAS- or BRAF-driven cancers.
Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Sinergismo Farmacológico , Inhibidores Enzimáticos/farmacología , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/metabolismo , Proteínas ras/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma del Pulmón , Animales , Puntos de Control del Ciclo Celular , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Daño del ADN , Modelos Animales de Enfermedad , Xenoinjertos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Trasplante de Neoplasias , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Proto-Oncogénicas p21(ras) , Células Tumorales CultivadasRESUMEN
Here, we show CRISPR/Cas9-based targeted somatic multiplex-mutagenesis and its application for high-throughput analysis of gene function in mice. Using hepatic single guide RNA (sgRNA) delivery, we targeted large gene sets to induce hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). We observed Darwinian selection of target genes, which suppress tumorigenesis in the respective cellular/tissue context, such as Pten or Cdkn2a, and conversely found low frequency of Brca1/2 alterations, explaining mutational spectra in human ICC/HCC. Our studies show that multiplexed CRISPR/Cas9 can be used for recessive genetic screening or high-throughput cancer gene validation in mice. The analysis of CRISPR/Cas9-induced tumors provided support for a major role of chromatin modifiers in hepatobiliary tumorigenesis, including that of ARID family proteins, which have recently been reported to be mutated in ICC/HCC. We have also comprehensively characterized the frequency and size of chromosomal alterations induced by combinatorial sgRNA delivery and describe related limitations of CRISPR/Cas9 multiplexing, as well as opportunities for chromosome engineering in the context of hepatobiliary tumorigenesis. Our study describes novel approaches to model and study cancer in a high-throughput multiplexed format that will facilitate the functional annotation of cancer genomes.
Asunto(s)
Sistemas CRISPR-Cas/genética , Carcinoma Hepatocelular/genética , Modelos Animales de Enfermedad , Genómica/métodos , Ensayos Analíticos de Alto Rendimiento , Neoplasias Hepáticas/genética , Mutagénesis/genética , Animales , Secuencia de Bases , Marcación de Gen , Técnicas Histológicas , Hígado/metabolismo , Ratones , Datos de Secuencia Molecular , Selección Genética/genéticaRESUMEN
In contrast to mono- or biallelic loss of tumor-suppressor function, effects of discrete gene dysregulations, as caused by non-coding (epi)genome alterations, are poorly understood. Here, by perturbing the regulatory genome in mice, we uncover pervasive roles of subtle gene expression variation in cancer evolution. Genome-wide screens characterizing 1,450 tumors revealed that such quasi-insufficiency is extensive across entities and displays diverse context dependencies, such as distinct cell-of-origin associations in T-ALL subtypes. We compile catalogs of non-coding regions linked to quasi-insufficiency, show their enrichment with human cancer risk variants, and provide functional insights by engineering regulatory alterations in mice. As such, kilo-/megabase deletions in a Bcl11b-linked non-coding region triggered aggressive malignancies, with allele-specific tumor spectra reflecting gradual gene dysregulations through modular and cell-type-specific enhancer activities. Our study constitutes a first survey toward a systems-level understanding of quasi-insufficiency in cancer and gives multifaceted insights into tumor evolution and the tissue-specific effects of non-coding mutations.
RESUMEN
BACKGROUND: Glioma is the most common intrinsic brain tumor and also occurs in the spinal cord. Activating EGFR mutations are common in IDH1 wild-type gliomas. However, the cooperative partners of EGFR driving gliomagenesis remain poorly understood. RESULTS: We explore EGFR-mutant glioma evolution in conditional mutant mice by whole-exome sequencing, transposon mutagenesis forward genetic screening, and transcriptomics. We show mutant EGFR is sufficient to initiate gliomagenesis in vivo, both in the brain and spinal cord. We identify significantly recurrent somatic alterations in these gliomas including mutant EGFR amplifications and Sub1, Trp53, and Tead2 loss-of-function mutations. Comprehensive functional characterization of 96 gliomas by genome-wide piggyBac insertional mutagenesis in vivo identifies 281 known and novel EGFR-cooperating driver genes, including Cdkn2a, Nf1, Spred1, and Nav3. Transcriptomics confirms transposon-mediated effects on expression of these genes. We validate the clinical relevance of new putative tumor suppressors by showing these are frequently altered in patients' gliomas, with prognostic implications. We discover shared and distinct driver mutations in brain and spinal gliomas and confirm in vivo differential tumor suppressive effects of Pten between these tumors. Functional validation with CRISPR-Cas9-induced mutations in novel genes Tead2, Spred1, and Nav3 demonstrates heightened EGFRvIII-glioma cell proliferation. Chemogenomic analysis of mutated glioma genes reveals potential drug targets, with several investigational drugs showing efficacy in vitro. CONCLUSION: Our work elucidates functional driver landscapes of EGFR-mutant gliomas, uncovering potential therapeutic strategies, and provides new tools for functional interrogation of gliomagenesis.
Asunto(s)
Neoplasias del Sistema Nervioso Central/genética , Elementos Transponibles de ADN , Receptores ErbB/genética , Genes erbB , Glioma/genética , Animales , Carcinogénesis , Receptores ErbB/metabolismo , Inestabilidad Genómica , Humanos , Ratones Transgénicos , Terapia Molecular Dirigida , Mutagénesis Insercional , Neoplasias Experimentales , Proteínas del Tejido Nervioso , Secuenciación del ExomaRESUMEN
An amendment to this paper has been published and can be accessed via the original article.
RESUMEN
B-cell lymphoma (BCL) is the most common hematologic malignancy. While sequencing studies gave insights into BCL genetics, identification of non-mutated cancer genes remains challenging. Here, we describe PiggyBac transposon tools and mouse models for recessive screening and show their application to study clonal B-cell lymphomagenesis. In a genome-wide screen, we discover BCL genes related to diverse molecular processes, including signaling, transcriptional regulation, chromatin regulation, or RNA metabolism. Cross-species analyses show the efficiency of the screen to pinpoint human cancer drivers altered by non-genetic mechanisms, including clinically relevant genes dysregulated epigenetically, transcriptionally, or post-transcriptionally in human BCL. We also describe a CRISPR/Cas9-based in vivo platform for BCL functional genomics, and validate discovered genes, such as Rfx7, a transcription factor, and Phip, a chromatin regulator, which suppress lymphomagenesis in mice. Our study gives comprehensive insights into the molecular landscapes of BCL and underlines the power of genome-scale screening to inform biology.
Asunto(s)
Elementos Transponibles de ADN/genética , Pruebas Genéticas/métodos , Linfoma de Células B/genética , Animales , Sistemas CRISPR-Cas/genética , Células Clonales , Dosificación de Gen , Regulación Neoplásica de la Expresión Génica , Genes Relacionados con las Neoplasias , Genes Supresores de Tumor , Estudios de Asociación Genética , Humanos , Pérdida de Heterocigocidad , Linfoma de Células B/patología , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptores de Antígenos de Linfocitos B/metabolismo , Reproducibilidad de los ResultadosRESUMEN
The DNA mutation produced by cellular repair of a CRISPR-Cas9-generated double-strand break determines its phenotypic effect. It is known that the mutational outcomes are not random, but depend on DNA sequence at the targeted location. Here we systematically study the influence of flanking DNA sequence on repair outcome by measuring the edits generated by >40,000 guide RNAs (gRNAs) in synthetic constructs. We performed the experiments in a range of genetic backgrounds and using alternative CRISPR-Cas9 reagents. In total, we gathered data for >109 mutational outcomes. The majority of reproducible mutations are insertions of a single base, short deletions or longer microhomology-mediated deletions. Each gRNA has an individual cell-line-dependent bias toward particular outcomes. We uncover sequence determinants of the mutations produced and use these to derive a predictor of Cas9 editing outcomes. Improved understanding of sequence repair will allow better design of gene editing experiments.
RESUMEN
Transposon-mediated forward genetics screening in mice has emerged as a powerful tool for cancer gene discovery. It pinpoints cancer drivers that are difficult to find with other approaches, thus complementing the sequencing-based census of human cancer genes. We describe here a large series of mouse lines for insertional mutagenesis that are compatible with two transposon systems, PiggyBac and Sleeping Beauty, and give guidance on the use of different engineered transposon variants for constitutive or tissue-specific cancer gene discovery screening. We also describe a method for semiquantitative transposon insertion site sequencing (QiSeq). The QiSeq library preparation protocol exploits acoustic DNA fragmentation to reduce bias inherent to widely used restriction-digestion-based approaches for ligation-mediated insertion site amplification. Extensive multiplexing in combination with next-generation sequencing allows affordable ultra-deep transposon insertion site recovery in high-throughput formats within 1 week. Finally, we describe principles of data analysis and interpretation for obtaining insights into cancer gene function and genetic tumor evolution.
Asunto(s)
Análisis Mutacional de ADN/métodos , Elementos Transponibles de ADN/genética , Genómica/métodos , Mutagénesis Insercional , Neoplasias/genética , Animales , Fragmentación del ADN , Redes Reguladoras de Genes , Humanos , Ratones , Modelos Moleculares , Mutagénesis , Conformación de Ácido NucleicoRESUMEN
The overwhelming number of genetic alterations identified through cancer genome sequencing requires complementary approaches to interpret their significance and interactions. Here we developed a novel whole-body insertional mutagenesis screen in mice, which was designed for the discovery of Pten-cooperating tumor suppressors. Toward this aim, we coupled mobilization of a single-copy inactivating Sleeping Beauty transposon to Pten disruption within the same genome. The analysis of 278 transposition-induced prostate, breast and skin tumors detected tissue-specific and shared data sets of known and candidate genes involved in cancer. We validated ZBTB20, CELF2, PARD3, AKAP13 and WAC, which were identified by our screens in multiple cancer types, as new tumor suppressor genes in prostate cancer. We demonstrated their synergy with PTEN in preventing invasion in vitro and confirmed their clinical relevance. Further characterization of Wac in vivo showed obligate haploinsufficiency for this gene (which encodes an autophagy-regulating factor) in a Pten-deficient context. Our study identified complex PTEN-cooperating tumor suppressor networks in different cancer types, with potential clinical implications.
Asunto(s)
Elementos Transponibles de ADN/genética , Genes Supresores de Tumor , Mutagénesis Insercional , Fosfohidrolasa PTEN/genética , Neoplasias de la Próstata/genética , Animales , Línea Celular , Movimiento Celular/genética , Células Epiteliales/citología , Células Epiteliales/metabolismo , Dosificación de Gen , Predisposición Genética a la Enfermedad/genética , Humanos , Estimación de Kaplan-Meier , Masculino , Ratones Noqueados , Ratones Transgénicos , Mutación , Próstata/citología , Próstata/metabolismo , Interferencia de ARN , Transducción de Señal/genéticaRESUMEN
Mouse transgenesis has provided fundamental insights into pancreatic cancer, but is limited by the long duration of allele/model generation. Here we show transfection-based multiplexed delivery of CRISPR/Cas9 to the pancreas of adult mice, allowing simultaneous editing of multiple gene sets in individual cells. We use the method to induce pancreatic cancer and exploit CRISPR/Cas9 mutational signatures for phylogenetic tracking of metastatic disease. Our results demonstrate that CRISPR/Cas9-multiplexing enables key applications, such as combinatorial gene-network analysis, in vivo synthetic lethality screening and chromosome engineering. Negative-selection screening in the pancreas using multiplexed-CRISPR/Cas9 confirms the vulnerability of pancreatic cells to Brca2-inactivation in a Kras-mutant context. We also demonstrate modelling of chromosomal deletions and targeted somatic engineering of inter-chromosomal translocations, offering multifaceted opportunities to study complex structural variation, a hallmark of pancreatic cancer. The low-frequency mosaic pattern of transfection-based CRISPR/Cas9 delivery faithfully recapitulates the stochastic nature of human tumorigenesis, supporting wide applicability for biological/preclinical research.
Asunto(s)
Carcinogénesis/genética , Páncreas/metabolismo , Neoplasias Pancreáticas/genética , Animales , Proteína BRCA2/genética , Sistemas CRISPR-Cas , Deleción Cromosómica , Electroporación , Ingeniería Genética/métodos , Genoma , Secuenciación de Nucleótidos de Alto Rendimiento , Inmunohistoquímica , Imagen por Resonancia Magnética , Ratones , Mutación , Neoplasias Experimentales/genética , Filogenia , Reacción en Cadena de la Polimerasa , Proteínas Proto-Oncogénicas p21(ras)/genética , Análisis de Secuencia de ADN , Transfección/métodos , Translocación Genética/genéticaRESUMEN
Here we describe a conditional piggyBac transposition system in mice and report the discovery of large sets of new cancer genes through a pancreatic insertional mutagenesis screen. We identify Foxp1 as an oncogenic transcription factor that drives pancreatic cancer invasion and spread in a mouse model and correlates with lymph node metastasis in human patients with pancreatic cancer. The propensity of piggyBac for open chromatin also enabled genome-wide screening for cancer-relevant noncoding DNA, which pinpointed a Cdkn2a cis-regulatory region. Histologically, we observed different tumor subentities and discovered associated genetic events, including Fign insertions in hepatoid pancreatic cancer. Our studies demonstrate the power of genetic screening to discover cancer drivers that are difficult to identify by other approaches to cancer genome analysis, such as downstream targets of commonly mutated human cancer genes. These piggyBac resources are universally applicable in any tissue context and provide unique experimental access to the genetic complexity of cancer.
Asunto(s)
Transformación Celular Neoplásica/genética , Elementos Transponibles de ADN/genética , Redes Reguladoras de Genes , Mutagénesis Insercional , Neoplasias Pancreáticas/genética , Secuencia de Aminoácidos , Animales , Factores de Transcripción Forkhead/análisis , Factores de Transcripción Forkhead/antagonistas & inhibidores , Factores de Transcripción Forkhead/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Técnicas de Sustitución del Gen , Genes Sintéticos , Genes p16 , Humanos , Ratones , Ratones Transgénicos , Datos de Secuencia Molecular , Mariposas Nocturnas/genética , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Neoplasias Pancreáticas/química , Neoplasias Pancreáticas/patología , ATPasas de Translocación de Protón/genética , ARN Interferente Pequeño/farmacología , Proteínas Represoras/análisis , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/genética , Transgenes , Transposasas/genética , Transposasas/fisiologíaRESUMEN
We show that BRAF(V600E) initiates an alternative pathway to colorectal cancer (CRC), which progresses through a hyperplasia/adenoma/carcinoma sequence. This pathway underlies significant subsets of CRCs with distinctive pathomorphologic/genetic/epidemiologic/clinical characteristics. Genetic and functional analyses in mice revealed a series of stage-specific molecular alterations driving different phases of tumor evolution and uncovered mechanisms underlying this stage specificity. We further demonstrate dose-dependent effects of oncogenic signaling, with physiologic Braf(V600E) expression being sufficient for hyperplasia induction, but later stage intensified Mapk-signaling driving both tumor progression and activation of intrinsic tumor suppression. Such phenomena explain, for example, the inability of p53 to restrain tumor initiation as well as its importance in invasiveness control, and the late stage specificity of its somatic mutation. Finally, systematic drug screening revealed sensitivity of this CRC subtype to targeted therapeutics, including Mek or combinatorial PI3K/Braf inhibition.
Asunto(s)
Neoplasias Colorrectales/etiología , Mutación , Proteínas Proto-Oncogénicas B-raf/genética , Animales , Transformación Celular Neoplásica , Neoplasias Colorrectales/tratamiento farmacológico , Inhibidor p16 de la Quinasa Dependiente de Ciclina , Ensayos de Selección de Medicamentos Antitumorales , Sistema de Señalización de MAP Quinasas , Ratones , Inestabilidad de Microsatélites , Invasividad Neoplásica , Proteínas de Neoplasias/fisiología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteína p53 Supresora de Tumor/fisiología , Vía de Señalización WntRESUMEN
Transposons are mobile DNA segments that can disrupt gene function by inserting in or near genes. Here, we show that insertional mutagenesis by the PiggyBac transposon can be used for cancer gene discovery in mice. PiggyBac transposition in genetically engineered transposon-transposase mice induced cancers whose type (hematopoietic versus solid) and latency were dependent on the regulatory elements introduced into transposons. Analysis of 63 hematopoietic tumors revealed that PiggyBac is capable of genome-wide mutagenesis. The PiggyBac screen uncovered many cancer genes not identified in previous retroviral or Sleeping Beauty transposon screens, including Spic, which encodes a PU.1-related transcription factor, and Hdac7, a histone deacetylase gene. PiggyBac and Sleeping Beauty have different integration preferences. To maximize the utility of the tool, we engineered 21 mouse lines to be compatible with both transposon systems in constitutive, tissue- or temporal-specific mutagenesis. Mice with different transposon types, copy numbers, and chromosomal locations support wide applicability.