Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Plant Sci ; 9: 1152, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30197649

RESUMEN

The cellulose synthase (CESA) proteins in Arabidopsis play an essential role in the production of cellulose in the cell walls. Herbicides such as isoxaben and flupoxam specifically target this production process and are prominent cellulose biosynthesis inhibitors (CBIs). Forward genetic screens in Arabidopsis revealed that mutations that can result in varying degrees of resistance to either isoxaben or flupoxam CBI can be attributed to single amino acid substitutions in primary wall CESAs. Missense mutations were almost exclusively present in the predicted transmembrane regions of CESA1, CESA3, and CESA6. Resistance to isoxaben was also conferred by modification to the catalytic residues of CESA3. This resulted in cellulose deficient phenotypes characterized by reduced crystallinity and dwarfism. However, mapping of mutations to the transmembrane regions also lead to growth phenotypes and altered cellulose crystallinity phenotypes. These results provide further genetic evidence supporting the involvement of CESA transmembrane regions in cellulose biosynthesis.

2.
Development ; 130(14): 3283-95, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12783798

RESUMEN

Proper chromatin condensation and sister chromatid resolution are essential for the maintenance of chromosomal integrity during cell division, and is in part mediated by a conserved multisubunit apparatus termed the condensin complex. The core subunits of the complex are members of the SMC2 (Structural Maintenance of Chromosomes) and SMC4 gene families. We have cloned an Arabidopsis gene, AtCAP-E1, which is a functional ortholog of the yeast SMC2 gene. A second, highly homologous SMC2 gene, AtCAPE-2, was identified by the Arabidopsis genome project. SMC2 gene expression in Arabidopsis was correlated with the mitotic activity of tissues, with high level expression observed in meristematic cells. The two genes are differentially expressed with AtCAP-E1 accounting for more than 85% of the total SMC2 transcript pool. The titan3 mutant is the result of a T-DNA insertion into AtCAP-E1, but other than subtle endosperm defects, titan3 is viable and fecund. We identified a T-DNA insertion mutant of AtCAP-E2, which showed no obvious mutant phenotype, indicating that the two genes are functionally redundant. Genetic crosses were employed to examine the consequences of reduced SMC2 levels. Both male and female gametogenesis were compromised in double mutant spores. Embryo lethality was observed for both double homozygous and AtCAP-E1(-/-), AtCAP-E2(+/-) plants; arrest occurred at or before the globular stage and was associated with altered planes of cell division in both the suspensor and the embryo. Down regulation of both genes by antisense technology, as well as in AtCAP-E1(+/-), AtCAP-E2(-/-) plants results in meristem disorganization and fasciation. Our data are consistent with the interpretation that threshold levels of SMC2 proteins are required for normal development and that AtCAP-E2 may have a higher affinity for its target than AtCAP-E1.


Asunto(s)
Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiología , Arabidopsis/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Meiosis , Meristema/fisiología , Mutación , Alelos , Cromatina/metabolismo , Clonación Molecular , Cruzamientos Genéticos , Genes de Plantas , Prueba de Complementación Genética , Genoma de Planta , Homocigoto , Immunoblotting , Hibridación in Situ , Microscopía Fluorescente , Mitosis , Modelos Genéticos , Complejos Multiproteicos , Oligonucleótidos Antisentido/farmacología , Fenotipo , Fenómenos Fisiológicos de las Plantas , Plantas Modificadas Genéticamente , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA