Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Reprod Domest Anim ; 58(3): 363-378, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36510745

RESUMEN

Transvaginal ultrasound-guided oocyte retrieval (commonly called OPU) and in vitro embryo production (IVP) in cattle has shown significant progress in recent years, in part, as a result of a better understanding of the full potential of these tools by end users. The combination of OPU and IVP (OPU-IVP) has been successfully and widely commercially used worldwide. The main advantages are a greater number of embryos and pregnancies per unit of time, faster genetic progress due to donor quick turn around and more elite sires mating combinations, larger spectrum of female age (calves, prepuberal, heifer, cow) and condition (open, pregnant) from which to retrieve oocytes, a reduced number of sperm (even sexed) required to fertilize the oocytes, among other benefits. OPU-IVP requires significant less donor preparation in comparison to conventional embryo transfer (<50% of usual FSH injections needed) to the extent of no stimulating hormones (FSH) are necessary. Donor synchronization, stimulation, OPU technique, oocyte competence, embryo performance, and its impact on cryopreservation and pregnancy are discussed.


Asunto(s)
Recuperación del Oocito , Semen , Embarazo , Bovinos , Animales , Femenino , Masculino , Recuperación del Oocito/veterinaria , Fertilización In Vitro/veterinaria , Oocitos/fisiología , Hormona Folículo Estimulante , Ultrasonografía Intervencional/veterinaria
2.
J Hered ; 112(2): 184-191, 2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33438035

RESUMEN

Genomics research has relied principally on the establishment and curation of a reference genome for the species. However, it is increasingly recognized that a single reference genome cannot fully describe the extent of genetic variation within many widely distributed species. Pangenome representations are based on high-quality genome assemblies of multiple individuals and intended to represent the broadest possible diversity within a species. A Bovine Pangenome Consortium (BPC) has recently been established to begin assembling genomes from more than 600 recognized breeds of cattle, together with other related species to provide information on ancestral alleles and haplotypes. Previously reported de novo genome assemblies for Angus, Brahman, Hereford, and Highland breeds of cattle are part of the initial BPC effort. The present report describes a complete single haplotype assembly at chromosome-scale for a fullblood Simmental cow from an F1 bison-cattle hybrid fetus by trio binning. Simmental cattle, also known as Fleckvieh due to their red and white spots, originated in central Europe in the 1830s as a triple-purpose breed selected for draught, meat, and dairy production. There are over 50 million Simmental cattle in the world, known today for their fast growth and beef yields. This assembly (ARS_Simm1.0) is similar in length to the other bovine assemblies at 2.86 Gb, with a scaffold N50 of 102 Mb (max scaffold 156.8 Mb) and meets or exceeds the continuity of the best Bos taurus reference assemblies to date.


Asunto(s)
Bovinos/genética , Genoma , Animales , Bison , Mapeo Cromosómico , Femenino , Haplotipos , Masculino
3.
J Hered ; 112(2): 174-183, 2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33595645

RESUMEN

Bison are an icon of the American West and an ecologically, commercially, and culturally important species. Despite numbering in the hundreds of thousands today, conservation concerns remain for the species, including the impact on genetic diversity of a severe bottleneck around the turn of the 20th century and genetic introgression from domestic cattle. Genetic diversity and admixture are best evaluated at genome-wide scale, for which a high-quality reference is necessary. Here, we use trio binning of long reads from a bison-Simmental cattle (Bos taurus taurus) male F1 hybrid to sequence and assemble the genome of the American plains bison (Bison bison bison). The male haplotype genome is chromosome-scale, with a total length of 2.65 Gb across 775 scaffolds (839 contigs) and a scaffold N50 of 87.8 Mb. Our bison genome is ~13× more contiguous overall and ~3400× more contiguous at the contig level than the current bison reference genome. The bison genome sequence presented here (ARS-UCSC_bison1.0) will enable new research into the evolutionary history of this iconic megafauna species and provide a new tool for the management of bison populations in federal and commercial herds.


Asunto(s)
Bison/genética , Genoma , Animales , Bovinos/genética , Mapeo Cromosómico , Femenino , Variación Genética , Haplotipos , Hibridación Genética , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA