Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 109(7): 1190-1198, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35803232

RESUMEN

Digital health solutions, with apps, virtual care, and electronic medical records, are gaining momentum across all medical disciplines, and their adoption has been accelerated, in part, by the COVID-19 pandemic. Personal wearables, sensors, and mobile technologies are increasingly being used to identify health risks and assist in diagnosis, treatment, and monitoring of health and disease. Genomics is a vanguard of digital healthcare as we witness a convergence of the fields of genomic and digital medicine. Spurred by the acute need to increase health literacy, empower patients' preference-sensitive decisions, or integrate vast amounts of complex genomic data into the clinical workflow, there has been an emergence of digital support tools in genomics-enabled care. We present three use cases that demonstrate the application of these converging technologies: digital genomics decision support tools, conversational chatbots to scale the genetic counseling process, and the digital delivery of comprehensive genetic services. These digital solutions are important to facilitate patient-centered care delivery, improve patient outcomes, and increase healthcare efficiencies in genomic medicine. Yet the development of these innovative digital genomic technologies also reveals strategic challenges that need to be addressed before genomic digital health can be broadly adopted. Alongside key evidentiary gaps in clinical and cost-effectiveness, there is a paucity of clinical guidelines, policy, and regulatory frameworks that incorporate digital health. We propose a research agenda, guided by learning healthcare systems, to realize the vision of digital health-enabled genomics to ensure its sustainable and equitable deployment in clinical care.


Asunto(s)
COVID-19 , Pandemias , COVID-19/genética , Atención a la Salud , Registros Electrónicos de Salud , Genómica , Humanos
2.
Am Heart J ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38762090

RESUMEN

BACKGROUND: As a mega-biobank linked to a national healthcare system, the Million Veteran Program (MVP) can directly improve the health care of participants. To determine the feasibility and outcomes of returning medically actionable genetic results to MVP participants, the program launched the MVP Return Of Actionable Results (MVP-ROAR) Study, with familial hypercholesterolemia (FH) as an exemplar actionable condition. METHODS: The MVP-ROAR Study consists of a completed single-arm pilot phase and an ongoing randomized clinical trial (RCT), in which MVP participants are recontacted and invited to receive clinical confirmatory gene sequencing testing and a telegenetic counseling intervention. The primary outcome of the RCT is 6-month change in low-density lipoprotein cholesterol (LDL-C) between participants receiving results at baseline and those receiving results after 6 months. RESULTS: The pilot developed processes to identify and recontact participants nationally with probable pathogenic variants in low-density lipoprotein receptor (LDLR) on the MVP genotype array, invite them to clinical confirmatory gene sequencing, and deliver a telegenetic counseling intervention. Among participants in the pilot phase, 8 (100%) had active statin prescriptions after 6 months. Results were shared with 16 first-degree family members. Six-month ΔLDL-C (low-density lipoprotein cholesterol) after the genetic counseling intervention was -37 mg/dL (95% CI: -12 to -61; p=0.03). The ongoing RCT will determine between-arm differences in this primary outcome. CONCLUSION: While underscoring the importance of clinical confirmation of research results, the pilot phase of the MVP-ROAR Study marks a turning point in MVP and demonstrates the feasibility of returning genetic results to participants and their providers. The ongoing RCT will contribute to understanding how such a program might improve patient health care and outcomes.

3.
Anesthesiology ; 140(1): 52-61, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37787745

RESUMEN

BACKGROUND: Malignant hyperthermia (MH) susceptibility is a heritable musculoskeletal disorder that can present as a potentially fatal hypermetabolic response to triggering anesthesia agents. Genomic screening for variants in MH-associated genes RYR1 and CACNA1S provides an opportunity to prevent morbidity and mortality. There are limited outcomes data from disclosing variants in RYR1, the most common MH susceptibility gene, in unselected populations. The authors sought to identify the rate of MH features or fulminant episodes after triggering agent exposure in an unselected population undergoing genomic screening including actionable RYR1 variants. METHODS: The MyCode Community Health Initiative by Geisinger (USA) is an electronic health record-linked biobank that discloses pathogenic and likely pathogenic variants in clinically actionable genes to patient-participants. Available electronic anesthesia and ambulatory records for participants with actionable RYR1 results returned through December 2020 were evaluated for pertinent findings via double-coded chart reviews and reconciliation. Descriptive statistics for observed phenotypes were calculated. RESULTS: One hundred fifty-two participants had an actionable RYR1 variant disclosed during the study period. None had previous documented genetic testing for MH susceptibility; one had previous contracture testing diagnosing MH susceptibility. Sixty-eight participants (44.7%) had anesthesia records documenting triggering agent exposure during at least one procedure. None received dantrolene treatment or had documented muscle rigidity, myoglobinuria, hyperkalemia, elevated creatine kinase, severe myalgia, or tea-colored urine. Of 120 possibly MH-related findings (postoperative intensive care unit admissions, hyperthermia, arterial blood gas evaluation, hypercapnia, or tachycardia), 112 (93.3%) were deemed unlikely to be MH events; 8 (6.7%) had insufficient records to determine etiology. CONCLUSIONS: Results demonstrate a low frequency of classic intraanesthetic hypermetabolic phenotypes in an unselected population with actionable RYR1 variants. Further research on the actionability of screening for MH susceptibility in unselected populations, including economic impact, predictors of MH episodes, and expanded clinical phenotypes, is necessary.


Asunto(s)
Hipertermia Maligna , Canal Liberador de Calcio Receptor de Rianodina , Humanos , Pruebas Genéticas , Hipertermia Maligna/diagnóstico , Hipertermia Maligna/genética , Hipertermia Maligna/patología , Metagenómica , Mutación , Fenotipo , Canal Liberador de Calcio Receptor de Rianodina/genética
4.
Adv Exp Med Biol ; 1441: 1057-1090, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884769

RESUMEN

Arrhythmias account for over 300,000 annual deaths in the United States, and approximately half of all deaths are associated with heart disease. Mechanisms underlying arrhythmia risk are complex; however, work in humans and animal models over the past 25 years has identified a host of molecular pathways linked with both arrhythmia substrates and triggers. This chapter will focus on select arrhythmia pathways solved by linking human clinical and genetic data with animal models.


Asunto(s)
Arritmias Cardíacas , Modelos Animales de Enfermedad , Animales , Humanos , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatología , Arritmias Cardíacas/metabolismo , Transducción de Señal/genética
5.
Am J Hum Genet ; 106(5): 707-716, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32386537

RESUMEN

Because polygenic risk scores (PRSs) for coronary heart disease (CHD) are derived from mainly European ancestry (EA) cohorts, their validity in African ancestry (AA) and Hispanic ethnicity (HE) individuals is unclear. We investigated associations of "restricted" and genome-wide PRSs with CHD in three major racial and ethnic groups in the U.S. The eMERGE cohort (mean age 48 ± 14 years, 58% female) included 45,645 EA, 7,597 AA, and 2,493 HE individuals. We assessed two restricted PRSs (PRSTikkanen and PRSTada; 28 and 50 variants, respectively) and two genome-wide PRSs (PRSmetaGRS and PRSLDPred; 1.7 M and 6.6 M variants, respectively) derived from EA cohorts. Over a median follow-up of 11.1 years, 2,652 incident CHD events occurred. Hazard and odds ratios for the association of PRSs with CHD were similar in EA and HE cohorts but lower in AA cohorts. Genome-wide PRSs were more strongly associated with CHD than restricted PRSs were. PRSmetaGRS, the best performing PRS, was associated with CHD in all three cohorts; hazard ratios (95% CI) per 1 SD increase were 1.53 (1.46-1.60), 1.53 (1.23-1.90), and 1.27 (1.13-1.43) for incident CHD in EA, HE, and AA individuals, respectively. The hazard ratios were comparable in the EA and HE cohorts (pinteraction = 0.77) but were significantly attenuated in AA individuals (pinteraction= 2.9 × 10-3). These results highlight the potential clinical utility of PRSs for CHD as well as the need to assemble diverse cohorts to generate ancestry- and ethnicity PRSs.


Asunto(s)
Negro o Afroamericano/genética , Enfermedad Coronaria/genética , Predisposición Genética a la Enfermedad , Hispánicos o Latinos/genética , Herencia Multifactorial/genética , Población Blanca/genética , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Oportunidad Relativa
6.
Curr Atheroscler Rep ; 25(5): 197-208, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37060538

RESUMEN

PURPOSE OF REVIEW: Genetic testing has proven utility in identifying and diagnosing individuals with FH. Here we outline the current landscape of genetic testing for FH, recommendations for testing practices and the efforts underway to improve access, availability, and uptake. RECENT FINDINGS: Alternatives to the traditional genetic testing and counseling paradigm for FH are being explored including expanding screening programs, testing in primary care and/or cardiology clinics, leveraging electronic communication tools like chatbots, and implementing direct contact approaches to facilitate genetic testing of both probands and at-risk relatives. There is no consensus on if, when, and how genetic testing or accompanying genetic counseling should be provided for FH, though traditional genetic counseling and/or testing in specialty lipid clinics is often recommended in expert statements and professional guidelines. More evidence is needed to determine whether alternative approaches to the implementation of genetic testing for FH may be more effective.


Asunto(s)
Pruebas Genéticas , Hiperlipoproteinemia Tipo II , Humanos , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/genética
7.
BMC Health Serv Res ; 23(1): 340, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37020233

RESUMEN

BACKGROUND: This project aimed to optimize communication strategies to support family communication about familial hypercholesterolemia (FH) and improve cascade testing uptake among at-risk relatives. Individuals and families with FH provided feedback on multiple strategies including: a family letter, digital tools, and direct contact. METHODS: Feedback from participants was collected via dyadic interviews (n = 11) and surveys (n = 98) on communication strategies and their proposed implementation to improve cascade testing uptake. We conducted a thematic analysis to identify how to optimize each strategy. We categorized optimizations and their implementation within the project's healthcare system using a Traffic Light approach. RESULTS: Thematic analysis resulted in four distinct suggested optimizations for each communication strategy and seven suggested optimizations that were suitable across all strategies. Four suggestions for developing a comprehensive cascade testing program, which would offer all optimized communication strategies also emerged. All optimized suggestions coded green (n = 21) were incorporated. Suggestions coded yellow (n = 12) were partially incorporated. Only two suggestions were coded red and could not be incorporated. CONCLUSIONS: This project demonstrates how to collect and analyze stakeholder feedback for program design. We identified feasible suggested optimizations, resulting in communication strategies that are patient-informed and patient-centered. Optimized strategies were implemented in a comprehensive cascade testing program.


Asunto(s)
Hiperlipoproteinemia Tipo II , Humanos , Comunicación , Pacientes , Pruebas Genéticas
8.
Eur Heart J ; 43(34): 3243-3254, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34788414

RESUMEN

AIMS: The aim of this study was to assess the impact and cost-effectiveness of offering population genomic screening to all young adults in Australia to detect heterozygous familial hypercholesterolaemia (FH). METHODS AND RESULTS: We designed a decision analytic Markov model to compare the current standard of care for heterozygous FH diagnosis in Australia (opportunistic cholesterol screening and genetic cascade testing) with the alternate strategy of population genomic screening of adults aged 18-40 years to detect pathogenic variants in the LDLR/APOB/PCSK9 genes. We used a validated cost-adaptation method to adapt findings to eight high-income countries. The model captured coronary heart disease (CHD) morbidity/mortality over a lifetime horizon, from healthcare and societal perspectives. Risk of CHD, treatment effects, prevalence, and healthcare costs were estimated from published studies. Outcomes included quality-adjusted life years (QALYs), costs and incremental cost-effectiveness ratio (ICER), discounted 5% annually. Sensitivity analyses were undertaken to explore the impact of key input parameters on the robustness of the model. Over the lifetime of the population (4 167 768 men; 4 129 961 women), the model estimated a gain of 33 488years of life lived and 51 790 QALYs due to CHD prevention. Population genomic screening for FH would be cost-effective from a healthcare perspective if the per-test cost was ≤AU$250, yielding an ICER of

Asunto(s)
Enfermedad Coronaria , Hiperlipoproteinemia Tipo II , Análisis Costo-Beneficio , Femenino , Humanos , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/epidemiología , Hiperlipoproteinemia Tipo II/genética , Masculino , Metagenómica , Proproteína Convertasa 9 , Años de Vida Ajustados por Calidad de Vida , Adulto Joven
9.
Eur Heart J ; 43(15): 1500-1510, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-34557911

RESUMEN

AIMS: Catecholaminergic polymorphic ventricular tachycardia (CPVT) and short QT syndrome (SQTS) are inherited arrhythmogenic disorders that can cause sudden death. Numerous genes have been reported to cause these conditions, but evidence supporting these gene-disease relationships varies considerably. To ensure appropriate utilization of genetic information for CPVT and SQTS patients, we applied an evidence-based reappraisal of previously reported genes. METHODS AND RESULTS: Three teams independently curated all published evidence for 11 CPVT and 9 SQTS implicated genes using the ClinGen gene curation framework. The results were reviewed by a Channelopathy Expert Panel who provided the final classifications. Seven genes had definitive to moderate evidence for disease causation in CPVT, with either autosomal dominant (RYR2, CALM1, CALM2, CALM3) or autosomal recessive (CASQ2, TRDN, TECRL) inheritance. Three of the four disputed genes for CPVT (KCNJ2, PKP2, SCN5A) were deemed by the Expert Panel to be reported for phenotypes that were not representative of CPVT, while reported variants in a fourth gene (ANK2) were too common in the population to be disease-causing. For SQTS, only one gene (KCNH2) was classified as definitive, with three others (KCNQ1, KCNJ2, SLC4A3) having strong to moderate evidence. The majority of genetic evidence for SQTS genes was derived from very few variants (five in KCNJ2, two in KCNH2, one in KCNQ1/SLC4A3). CONCLUSIONS: Seven CPVT and four SQTS genes have valid evidence for disease causation and should be included in genetic testing panels. Additional genes associated with conditions that may mimic clinical features of CPVT/SQTS have potential utility for differential diagnosis.


Asunto(s)
Canal de Potasio KCNQ1 , Taquicardia Ventricular , Arritmias Cardíacas , Calmodulina , Muerte Súbita Cardíaca/etiología , Humanos , Canal de Potasio KCNQ1/genética , Canal Liberador de Calcio Receptor de Rianodina/genética , Taquicardia Ventricular/diagnóstico
10.
Curr Opin Lipidol ; 33(6): 336-341, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-35779062

RESUMEN

PURPOSE OF REVIEW: Guidelines provide recommendations for clinicians based on the best available evidence and informed by clinical expertise. These recommendations often fail to be utilized by clinicians hindering the translation of evidence into practice. The purpose of this review is to describe novel ways in which implementation science has been used to improve translation of guidelines into clinical practice in the field of lipidology. RECENT FINDINGS: We searched PubMed for articles related to guideline implementation in lipidology published in 2021 and 2022. Identified articles were categorized into three domains: first, poor uptake of guideline recommendations in practice; second, implementation science as a solution to improve care; and third, examples of how implementation science can be incorporated into guidelines. SUMMARY: The field of lipidology has identified that many guideline recommendations fail to be translated into practice and has started to utilize methods from implementation science to assess ways to shrink this gap. Future work should focus on deploying tools from implementation science to address current gaps in guideline development. Such as, developing a systematic approach to restructure guideline recommendations so they are implementable in practice and aid in clinicians' ability to easily translate them into practice.


Asunto(s)
Ciencia de la Implementación , Humanos
11.
Am J Hum Genet ; 104(2): 193-196, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30735659

RESUMEN

Clinical genetics and genomics will exert their greatest population impact by leveraging the rich knowledge of human behavior that is central to the discipline of behavioral medicine. We contend that more concerted efforts are needed to integrate these fields synergistically, and accordingly, we consider barriers and potential actions to hasten such integration.


Asunto(s)
Investigación Conductal/métodos , Investigación Conductal/organización & administración , Asesoramiento Genético/psicología , Genética Médica/métodos , Genética Médica/organización & administración , Genómica/métodos , Genómica/organización & administración , Cumplimiento de la Medicación/psicología , Femenino , Humanos , Cumplimiento de la Medicación/estadística & datos numéricos , Medicina de Precisión/psicología , Salud Pública/métodos
12.
BMC Med ; 20(1): 205, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35668420

RESUMEN

BACKGROUND: In current care, patients' personal and self-reported family histories are primarily used to determine whether genetic testing for hereditary endocrine tumor syndromes (ETS) is indicated. Population genomic screening for other conditions has increased ascertainment of individuals with pathogenic/likely pathogenic (P/LP) variants, leading to improved management and earlier diagnoses. It is unknown whether such benefits occur when screening broader populations for P/LP ETS variants. This manuscript assesses clinical utility outcomes of a large, unselected, healthcare-based genomic screening program by describing personal and family history of syndrome-related features, risk management behaviors after result disclosure, and rates of relevant post-disclosure diagnoses in patient-participants with P/LP ETS variants. METHODS: Observational study of individuals informed of a P/LP variant in MEN1, RET, SDHAF2, SDHB, SDHC, SDHD, or VHL through Geisinger's MyCode Community Health Initiative between June 2016 and October 2019. Electronic health records (EHRs) of participants were evaluated for a report of pre-disclosure personal and self-reported family histories and post-disclosure risk management and diagnoses. RESULTS: P/LP variants in genes of interest were identified in 199 of 130,490 (1 in 656) adult Geisinger MyCode patient-participants, 80 of which were disclosed during the study period. Eighty-one percent (n = 65) did not have prior evidence of the result in their EHR and, because they were identified via MyCode, were included in further analyses. Five participants identified via MyCode (8%) had a personal history of syndrome-related features; 16 (25%) had a positive self-reported family history. Time from result disclosure to EHR review was a median of 0.7 years. Post-disclosure, 36 (55.4%) completed a recommended risk management behavior; 11 (17%) were diagnosed with a syndrome-related neoplasm after completing a risk management intervention. CONCLUSIONS: Broader screening for pathogenic/likely pathogenic variants associated with endocrine tumor syndromes enables detection of at-risk individuals, leads to the uptake of risk management, and facilitates relevant diagnoses. Further research will be necessary to continue to determine the clinical utility of screening diverse, unselected populations for such variants.


Asunto(s)
Metagenómica , Neoplasias , Adulto , Atención a la Salud , Pruebas Genéticas , Humanos , Síndrome
13.
Genet Med ; 24(5): 1130-1138, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35216901

RESUMEN

PURPOSE: The goal of Electronic Medical Records and Genomics (eMERGE) Phase III Network was to return actionable sequence variants to 25,084 consenting participants from 10 different health care institutions across the United States. The purpose of this study was to evaluate system-based issues relating to the return of results (RoR) disclosure process for clinical grade research genomic tests to eMERGE3 participants. METHODS: RoR processes were developed and approved by each eMERGE institution's internal review board. Investigators at each eMERGE3 site were surveyed for RoR processes related to the participant's disclosure of pathogenic or likely pathogenic variants and engagement with genetic counseling. Standard statistical analysis was performed. RESULTS: Of the 25,084 eMERGE participants, 1444 had a pathogenic or likely pathogenic variant identified on the eMERGEseq panel of 67 genes and 14 single nucleotide variants. Of these, 1077 (74.6%) participants had results disclosed, with 562 (38.9%) participants provided with variant-specific genetic counseling. Site-specific processes that either offered or required genetic counseling in their RoR process had an effect on whether a participant ultimately engaged with genetic counseling (P = .0052). CONCLUSION: The real-life experience of the multiarm eMERGE3 RoR study for returning actionable genomic results to consented research participants showed the impact of consent, method of disclosure, and genetic counseling on RoR.


Asunto(s)
Genoma , Genómica , Revelación , Asesoramiento Genético , Humanos , Grupos de Población
14.
J Genet Couns ; 31(5): 1219-1230, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35616645

RESUMEN

Successful proband-mediated family communication and subsequent cascade genetic testing uptake requires interventions that present information clearly, in sufficient detail, and with medical authority. To facilitate family communication for patients receiving clinically actionable results via the MyCode® Community Health Initiative, a Family Sharing Tool (FST) and a cascade chatbot were developed. FST is an electronic mechanism allowing patients to share genetic test results with relatives via chatbot. The cascade chatbot describes the proband's result, associated disease risks, and recommended management and captures whether the user is a blood relative or caregiver, sex, and relationship to the proband. FST and cascade chatbot uptake among MyCode® probands and relatives was tracked from August 2018 through February 2020. Cascade genetic testing uptake was collected from testing laboratories as number of cascades per proband. Fifty-eight percent (316/543) of probands consented to FST; 42% (227/543) declined. Receipt preferences were patient electronic health record (EHR) portal (52%), email (29%), and text (19%). Patient EHR portal users (p < 0.001) and younger patients were more likely to consent (p < 0.001). FST was deployed to 308 probands. Fifty-nine percent (183/308) opened; of those, 56% (102/183) used FST to send a cascade chatbot to relatives. These 102 probands shared a cascade chatbot with 377 relatives. Sixty-two percent (235/377) of relatives opened; of these, 69% (161/235) started, and of these, 57% (92/161) completed the cascade chatbot. Cascade genetic testing uptake was significantly greater among relatives of probands who consented to the FST (M = 2.34 cascades, SD = 2.10) than relatives of probands who declined (M = 1.40 cascades, SD = 0.82, p < 0.001). Proband age was not a significant predictor of cascade genetic testing uptake. Further work is needed to better understand factors impacting proband use of FST and relative use of cascade chatbots.


Asunto(s)
Familia , Pruebas Genéticas , Comunicación , Humanos , Salud Pública , Programas Informáticos
15.
Circulation ; 141(6): 418-428, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-31983240

RESUMEN

BACKGROUND: Long QT syndrome (LQTS) is the first described and most common inherited arrhythmia. Over the last 25 years, multiple genes have been reported to cause this condition and are routinely tested in patients. Because of dramatic changes in our understanding of human genetic variation, reappraisal of reported genetic causes for LQTS is required. METHODS: Utilizing an evidence-based framework, 3 gene curation teams blinded to each other's work scored the level of evidence for 17 genes reported to cause LQTS. A Clinical Domain Channelopathy Working Group provided a final classification of these genes for causation of LQTS after assessment of the evidence scored by the independent curation teams. RESULTS: Of 17 genes reported as being causative for LQTS, 9 (AKAP9, ANK2, CAV3, KCNE1, KCNE2, KCNJ2, KCNJ5, SCN4B, SNTA1) were classified as having limited or disputed evidence as LQTS-causative genes. Only 3 genes (KCNQ1, KCNH2, SCN5A) were curated as definitive genes for typical LQTS. Another 4 genes (CALM1, CALM2, CALM3, TRDN) were found to have strong or definitive evidence for causality in LQTS with atypical features, including neonatal atrioventricular block. The remaining gene (CACNA1C) had moderate level evidence for causing LQTS. CONCLUSIONS: More than half of the genes reported as causing LQTS have limited or disputed evidence to support their disease causation. Genetic variants in these genes should not be used for clinical decision-making, unless accompanied by new and sufficient genetic evidence. The findings of insufficient evidence to support gene-disease associations may extend to other disciplines of medicine and warrants a contemporary evidence-based evaluation for previously reported disease-causing genes to ensure their appropriate use in precision medicine.


Asunto(s)
Bloqueo Atrioventricular/genética , Enfermedades Genéticas Congénitas/genética , Predisposición Genética a la Enfermedad , Síndrome de QT Prolongado/genética , Medicina Basada en la Evidencia , Femenino , Humanos , Masculino , Estudios Multicéntricos como Asunto
16.
Am J Hum Genet ; 103(3): 328-337, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30100086

RESUMEN

There is growing interest in communicating clinically relevant DNA sequence findings to research participants who join projects with a primary research goal other than the clinical return of such results. Since Geisinger's MyCode Community Health Initiative (MyCode) was launched in 2007, more than 200,000 participants have been broadly consented for discovery research. In 2013 the MyCode consent was amended to include a secondary analysis of research genomic sequences that allows for delivery of clinical results. Since May 2015, pathogenic and likely pathogenic variants from a set list of genes associated with monogenic conditions have prompted "genome-first" clinical encounters. The encounters are described as genome-first because they are identified independent of any clinical parameters. This article (1) details our process for generating clinical results from research data, delivering results to participants and providers, facilitating condition-specific clinical evaluations, and promoting cascade testing of relatives, and (2) summarizes early results and participant uptake. We report on 542 participants who had results uploaded to the electronic health record as of February 1, 2018 and 291 unique clinical providers notified with one or more participant results. Of these 542 participants, 515 (95.0%) were reached to disclose their results and 27 (5.0%) were lost to follow-up. We describe an exportable model for delivery of clinical care through secondary use of research data. In addition, subject and provider participation data from the initial phase of these efforts can inform other institutions planning similar programs.


Asunto(s)
Genoma Humano/genética , Estudios de Cohortes , Registros Electrónicos de Salud , Genómica/métodos , Personal de Salud , Humanos , Análisis de Secuencia de ADN/métodos
17.
J Genet Couns ; 30(2): 503-512, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33029862

RESUMEN

Genetic testing for cardiovascular disease (CVD) has advanced over the past ten years, but these advancements have posed new challenges in variant classification. To address these challenges, ACMG/AMP published guidelines for variant interpretation in 2015. This study aimed to determine what impact these guidelines have on variant classification in clinical cardiovascular genetics. A retrospective chart review identified patients who underwent clinical genetic testing and had a variant identified in a gene associated with CVD. For each variant, systematic evidence review was performed and ACMG guidelines were applied for classification. These classifications were compared to those provided on patients' genetic test reports. This study identified 223 unique variants in 237 patients. Seventy-nine (35%) of the variants had classifications that differed from their clinical reports. Twenty-eight (35%) of these reclassifications would have changed medical management recommendations for 38 patients. Application of these guidelines resulted in reclassification for approximately one-third of the variants in this study. Clinicians can have a more active role in the process of variant classification. Variant classifications should be updated over time in the clinical CVD setting due to the impact reclassifications can have on clinical screening recommendations.


Asunto(s)
Enfermedades Cardiovasculares , Variación Genética , Enfermedades Cardiovasculares/genética , Pruebas Genéticas , Humanos , Estudios Retrospectivos
18.
J Genet Couns ; 30(3): 634-644, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33786929

RESUMEN

Emerging genetic testing delivery models have enabled individuals to receive testing without a medical indication. This article will highlight key considerations for patient care in the setting of adult patients with positive results for monogenic disease identified through genomic screening. Suggestions for how to adapt genetic counseling to a genomic screening population will encompass topics such as phenotyping, risk assessments, and the use of existing guidelines and resources. Case examples will demonstrate principles of genotype-first patient care.


Asunto(s)
Asesoramiento Genético , Pruebas Genéticas , Adulto , Genómica , Humanos
19.
Circulation ; 140(1): 42-54, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31216868

RESUMEN

BACKGROUND: Truncating variants in the Titin gene (TTNtvs) are common in individuals with idiopathic dilated cardiomyopathy (DCM). However, a comprehensive genomics-first evaluation of the impact of TTNtvs in different clinical contexts, and the evaluation of modifiers such as genetic ancestry, has not been performed. METHODS: We reviewed whole exome sequence data for >71 000 individuals (61 040 from the Geisinger MyCode Community Health Initiative (2007 to present) and 10 273 from the PennMedicine BioBank (2013 to present) to identify anyone with TTNtvs. We further selected individuals with TTNtvs in exons highly expressed in the heart (proportion spliced in [PSI] >0.9). Using linked electronic health records, we evaluated associations of TTNtvs with diagnoses and quantitative echocardiographic measures, including subanalyses for individuals with and without DCM diagnoses. We also reviewed data from the Jackson Heart Study to validate specific analyses for individuals of African ancestry. RESULTS: Identified with a TTNtv in a highly expressed exon (hiPSI) were 1.2% individuals in PennMedicine BioBank and 0.6% at Geisinger. The presence of a hiPSI TTNtv was associated with increased odds of DCM in individuals of European ancestry (odds ratio [95% CI]: 18.7 [9.1-39.4] {PennMedicine BioBank} and 10.8 [7.0-16.0] {Geisinger}). hiPSI TTNtvs were not associated with DCM in individuals of African ancestry, despite a high DCM prevalence (odds ratio, 1.8 [0.2-13.7]; P=0.57). Among 244 individuals of European ancestry with DCM in PennMedicine BioBank, hiPSI TTNtv carriers had lower left ventricular ejection fraction (ß=-12%, P=3×10-7), and increased left ventricular diameter (ß=0.65 cm, P=9×10-3). In the Geisinger cohort, hiPSI TTNtv carriers without a cardiomyopathy diagnosis had more atrial fibrillation (odds ratio, 2.4 [1.6-3.6]) and heart failure (odds ratio, 3.8 [2.4-6.0]), and lower left ventricular ejection fraction (ß=-3.4%, P=1×10-7). CONCLUSIONS: Individuals of European ancestry with hiPSI TTNtv have an abnormal cardiac phenotype characterized by lower left ventricular ejection fraction, irrespective of the clinical manifestation of cardiomyopathy. Associations with arrhythmias, including atrial fibrillation, were observed even when controlling for cardiomyopathy diagnosis. In contrast, no association between hiPSI TTNtvs and DCM was discerned among individuals of African ancestry. Given these findings, clinical identification of hiPSI TTNtv carriers may alter clinical management strategies.


Asunto(s)
Conectina/genética , Registros Electrónicos de Salud , Variación Genética/genética , Genómica/métodos , Cardiopatías/genética , Población Blanca/genética , Adulto , Anciano , Estudios de Cohortes , Registros Electrónicos de Salud/tendencias , Femenino , Cardiopatías/diagnóstico , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad
20.
Genet Med ; 22(11): 1874-1882, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32601386

RESUMEN

PURPOSE: Three genetic conditions-hereditary breast and ovarian cancer syndrome, Lynch syndrome, and familial hypercholesterolemia-have tier 1 evidence for interventions that reduce morbidity and mortality, prompting proposals to screen unselected populations for these conditions. We examined the impact of genomic screening on risk management and early detection in an unselected population. METHODS: Observational study of electronic health records (EHR) among individuals in whom a pathogenic/likely pathogenic variant in a tier 1 gene was discovered through Geisinger's MyCode project. EHR of all eligible participants was evaluated for a prior genetic diagnosis and, among participants without such a diagnosis, relevant personal/family history, postdisclosure clinical diagnoses, and postdisclosure risk management. RESULTS: Eighty-seven percent of participants (305/351) did not have a prior genetic diagnosis of their tier 1 result. Of these, 65% had EHR evidence of relevant personal and/or family history of disease. Of 255 individuals eligible to have risk management, 70% (n = 179) had a recommended risk management procedure after results disclosure. Thirteen percent of participants (41/305) received a relevant clinical diagnosis after results disclosure. CONCLUSION: Genomic screening programs can identify previously unrecognized individuals at increased risk of cancer and heart disease and facilitate risk management and early cancer detection.


Asunto(s)
Neoplasias Colorrectales Hereditarias sin Poliposis , Síndrome de Cáncer de Mama y Ovario Hereditario , Hiperlipoproteinemia Tipo II , Neoplasias Colorrectales Hereditarias sin Poliposis/diagnóstico , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Detección Precoz del Cáncer , Femenino , Predisposición Genética a la Enfermedad , Pruebas Genéticas , Genómica , Humanos , Hiperlipoproteinemia Tipo II/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA