RESUMEN
GDC-0810 is a small molecule therapeutic agent having potential to treat breast cancer. In plasma of the first-in-human study, metabolite M2, accounting for 20.7% of total drug-related materials, was identified as a discrete diglucuronide that was absent in rats. Acyl glucuronide M6 and N-glucuronide M4 were also identified as prominent metabolites in human plasma. Several in vitro studies were conducted in incubations of [14C]GDC-0810, synthetic M6 and M4 with liver microsomes, intestinal microsomes, and hepatocytes of different species as well as recombinant UDP-glucuronosyltransferase (UGT) enzymes to further understand the formation of M2. The results suggested that 1) M2 was more efficiently formed from M6 than from M4, and 2) acyl glucuronidation was mainly catalyzed by UGT1A8/7/1 that is highly expressed in the intestines whereas N-glucuronidation was mainly catalyzed by UGT1A4 that is expressed in the human liver. This complicated mechanism presented challenges in predicting M2 formation using human in vitro systems. The absence of M2 and M4 in rats can be explained by low to no expression of UGT1A4 in rodents. M2 could be the first discrete diglucuronide that was formed from both acyl- and N-glucuronidation on a molecule identified in human plasma. SIGNIFICANCE STATEMENT: A discrete diglucuronidation metabolite of GDC-0810, a breast cancer drug candidate, was characterized as a unique circulating metabolite in humans that was not observed in rats or little formed in human in vitro system.
Asunto(s)
Neoplasias de la Mama , Glucurónidos , Humanos , Ratas , Animales , Femenino , Glucurónidos/metabolismo , Glucuronosiltransferasa/metabolismo , Microsomas Hepáticos/metabolismo , UDP Glucuronosiltransferasa 1A9 , Administración Oral , Neoplasias de la Mama/metabolismoRESUMEN
Macrocyclic peptides (MCPs) are an emerging class of promising drug modalities that can be used to interrogate hard-to-drug ("undruggable") targets. However, their poor intestinal stability is one of the major liabilities or obstacles for oral drug delivery. We therefore investigated the metabolic stability and biotransformation of MCPs via a systematic approach and established an integrated in vitro assay strategy to facilitate MCP drug discovery, with a focus on oral delivery liabilities. A group of diverse MCPs were incubated with representative matrices, including simulated intestinal fluid with pancreatin (SIFP), human enterocytes, liver S9 fractions, liver lysosomes, plasma, and recombinant enzymes. The results revealed that the stability and biotransformation of MCPs varied, with the major metabolic pathways identified in different matrices. Under the given conditions, the selected MCPs generally showed better stability in plasma compared to that in SIFP. Our data suggest that pancreatic enzymes act as the primary metabolic barrier for the oral delivery of MCPs, mainly through hydrolysis of their backbone amide bonds. Whereas in enterocytes, multiple metabolic pathways appeared to be involved and resulted in metabolic reactions such as oxidation and reduction in addition to hydrolysis. Further studies suggested that lysosomal peptidase cathepsin B could be a major enzyme responsible for the cleavage of side-chain amide bonds in lysosomes. Collectively, we developed and implemented an integrated assay for assessing the metabolic stability and biotransformation of MCPs for compound screening in the discovery stage toward oral delivery. The proposed question-driven assay cascade can provide biotransformation insights that help to guide and facilitate lead candidate selection and optimization.
Asunto(s)
Péptido Hidrolasas , Péptidos , Biotransformación , Descubrimiento de Drogas , Humanos , Preparaciones FarmacéuticasRESUMEN
Over the past decades, the number of scientists trained in departments dedicated to traditional medicinal chemistry, biotransformation and/or chemical toxicology have seemingly declined. Yet, there remains a strong demand for such specialized skills in the pharmaceutical industry, particularly within drug metabolism/pharmacokinetics (DMPK) departments. In this position paper, the members of the Biotransformation, Mechanisms, and Pathways Focus Group (BMPFG) steering committee reflect on the diverse roles and responsibilities of scientists trained in the biotransformation field in pharmaceutical companies and contract research organizations. The BMPFG is affiliated with the International Society for the Study of Xenobiotics (ISSX) and was specifically created to promote the exchange of ideas pertaining to topics of current and future interest involving the metabolism of xenobiotics (including drugs). The authors also delve into the relevant education and diverse training skills required to successfully nurture the future cohort of industry biotransformation scientists and guide them toward a rewarding career path. The ability of scientists with a background in biotransformation and organic chemistry to creatively solve complex drug metabolism problems encountered during research and development efforts on both small and large molecular modalities is exemplified in five relevant case studies. Finally, the authors stress the importance and continued commitment to training the next generation of biotransformation scientists who are not only experienced in the metabolism of conventional small molecule therapeutics, but are also equipped to tackle emerging challenges associated with new drug discovery modalities including peptides, protein degraders, and antibodies. SIGNIFICANCE STATEMENT: Biotransformation and mechanistic drug metabolism scientists are critical to advancing chemical entities through discovery and development, yet the number of scientists academically trained for this role is on the decline. This position paper highlights the continuing demand for biotransformation scientists and the necessity of nurturing creative ways to train them and guarantee the future growth of this field.
Asunto(s)
Industria Farmacéutica , Xenobióticos , Biotransformación , Descubrimiento de Drogas , Humanos , Preparaciones FarmacéuticasRESUMEN
BACKGROUND: In pediatric living-donor liver transplantation, lactated Ringer's solution and normal saline are commonly used for intraoperative fluid management, but the comparative clinical outcomes remain uncertain. AIMS: To compare the effect between lactated Ringer's solution and normal saline for intraoperative volume replacement on clinical outcomes among pediatric living-donor liver transplantation patients. METHODS: This single-center, retrospective trial study enrolled children who received either lactated Ringer's solution or normal saline during living-donor liver transplantation between January 2010 and August 2016. The groups with comparable clinical characteristics were balanced by propensity score matching. The primary outcome was 90-day all-cause mortality, and the secondary outcomes included early allograft dysfunction, primary nonfunction, acute renal injury, and hospital-free days (days alive postdischarge within 30 days of liver transplantation). RESULTS: We included 333 pediatric patients who met the entry criteria for analysis. Propensity score matching identified 61 patients in each group. After matching, the lactated Ringer's solution group had a higher 90-day mortality rate than the normal saline group (11.5% vs. 0.0%). Early allograft dysfunction and primary nonfunction incidences were also more frequent in the lactated Ringer's solution group (19.7% and 11.5%, respectively) than in the normal saline group (3.3% and 0.0%, respectively). In the lactated Ringer's solution group, four (6.6%) recipients developed acute renal injury within 7 days postoperatively compared with three (4.9%) recipients in the normal saline group. Hospital-free days did not differ between groups (9 days [1-13] vs. 9 days [0-12]). CONCLUSIONS: For intraoperative fluid management in pediatric living-donor liver transplantation patients, lactated Ringer's solution administration was associated with a higher 90-day mortality rate than normal saline. This finding has important implications for selecting crystalloid in pediatric living-donor liver transplantation. Further randomized clinical trials in larger cohort are necessary to confirm this finding.
Asunto(s)
Trasplante de Hígado , Solución Salina , Cuidados Posteriores , Niño , Humanos , Soluciones Isotónicas , Donadores Vivos , Alta del Paciente , Estudios Retrospectivos , Lactato de RingerRESUMEN
Macrocyclic peptides are predominantly peptide structures bearing one or more rings and spanning multiple amino acid residues. Macrocyclization has become a common approach for improving the pharmacological properties and bioactivity of peptides. A variety of ribosomal-derived and non-ribosomal synthesized cyclization approaches have been established. The biosynthesis of backbone macrocyclic peptides using seven new emerging methodologies will be discussed with regard to the features and strengths of each platform rather than medicinal chemistry tools. The mRNA display variant, known as the random nonstandard peptide integrated discovery (RaPID) platform, utilizes flexible in vitro translation (FIT) to access macrocyclic peptides containing nonproteinogenic amino acids (NAAs). As a new discovery approach, the ribosomally synthesized and post-translationally modified peptides (RiPPs) method involves the combination of ribosomal synthesis and the phage screening platform together with macrocyclization chemistries to generate libraries of macrocyclic peptides. Meanwhile, the split-intein circular ligation of peptides and proteins (SICLOPPS) approach relies on the in vivo production of macrocyclic peptides. In vitro and in vivo peptide library screening is discussed as an advanced strategy for cyclic peptide selection. Specifically, biosynthetic bicyclic peptides are highlighted as versatile and attractive modalities. Bicyclic peptides represent another type of promising therapeutics that allow for building blocks with a heterotrimeric conjugate to address intractable challenges and enable multimer complexes via linkers. Additionally, we discuss the cell-free chemoenzymatic synthesis of macrocyclic peptides with a non-ribosomal catalase known as the non-ribosomal synthetase (NRPS) and chemo-enzymatic approach, with recombinant thioesterase (TE) domains. Novel insights into the use of peptide library tools, activity-based two-hybrid screening, structure diversification, inclusion of NAAs, combinatorial libraries, expanding the toolbox for macrocyclic peptides, bicyclic peptides, chemoenzymatic strategies, and future perspectives are presented. This review highlights the broad spectrum of strategy classes, novel platforms, structure diversity, chemical space, and functionalities of macrocyclic peptides enabled by emerging biosynthetic platforms to achieve bioactivity and for therapeutic purposes.
Asunto(s)
Péptido Sintasas/metabolismo , Péptidos Cíclicos/biosíntesis , Ciclización , Humanos , Biblioteca de Péptidos , Técnicas del Sistema de Dos HíbridosRESUMEN
This work discloses the first examples of antibody-drug conjugates (ADCs) that are constructed from linker-drugs bearing dimeric seco-CBI payloads (duocarmycin analogs). Several homogeneous, CD22-targeting THIOMAB antibody-drug conjugates (TDCs) containing the dimeric seco-CBI entities are shown to be highly efficacious in the WSU-DLCL2 and BJAB mouse xenograft models. Surprisingly, the seco-CBI-containing conjugates are also observed to undergo significant biotransformation in vivo in mice, rats, and monkeys and thereby form 1:1 adducts with the Alpha-1-Microglobulin (A1M) plasma protein from these species. Variation of both the payload mAb attachment site and length of the linker-drug is shown to alter the rates of adduct formation. Subsequent experiments demonstrated that adduct formation attenuates the in vitro antiproliferation activity of the affected seco-CBI-dimer TDCs, but does not significantly impact the in vivo efficacy of the conjugates. In vitro assays employing phosphatase-treated whole blood suggest that A1M adduct formation is likely to occur if the seco-CBI-dimer TDCs are administered to humans. Importantly, protein adduct formation leads to the underestimation of total antibody (Tab) concentrations using an ELISA assay but does not affect Tab values determined via an orthogonal LC-MS/MS method. Several recommendations regarding bioanalysis of future in vivo studies involving related seco-CBI-containing ADCs are provided based on these collective findings.
Asunto(s)
alfa-Globulinas/química , Antineoplásicos/farmacología , Inmunoconjugados/farmacología , Animales , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Dimerización , Haplorrinos , Humanos , Inmunoconjugados/química , Ratones , Ratas , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Antibody-drug conjugates (ADCs) contain a disease-receptor antibody and a payload drug connected via a linker. The payload delivery depends on both tumor properties and ADC characteristics. In this study, we used different linkers, attachment sites, and doses to modulate payload delivery of several ADCs bearing maytansinoids (e.g., DM1), auristatins (e.g., MMAE), and DNA alkylating agents [e.g., pyrrolo[2,1-c][1,4]benzodiazepine-dimer (PBD)] as payloads in HER2- or CD22-expressing xenograft models. The tumor growth inhibition and ADC stability and exposure data were collected and analyzed from these dosed animals. The trend analysis suggests that intratumoral payload exposures that directly related the combination of conjugate linker and dose correlate with the corresponding efficacies of three payload types in two antigen-expressing xenograft models. These preliminary correlations also suggest that a minimal threshold concentration of intratumoral payload is required to support sustained efficacy. In addition, an ADC can deliver an excessive level of payload to tumors that does not enhance efficacy ("Plateau" effect). In contrast to tumor payload concentrations, the assessments of systemic exposures of total antibody (Tab) as well as the linker, dose, site of attachment, plasma stability, and drug-to-antibody ratio changes of these ADCs did not consistently rationalize the observed ADC efficacies. The requirement of a threshold payload concentration for efficacy is further supported by dose fractionation studies with DM1-, MMAE-, and PBD-containing ADCs, which demonstrated that single-dose regimens showed better efficacies than fractionated dosing. Overall, this study demonstrates that 1) the linker and dose together determine the tissue payload concentration that correlates with the antitumor efficacy of ADCs and 2) an ADC can deliver an unnecessary level of payload to tumors in xenograft models.
Asunto(s)
Antineoplásicos Inmunológicos/farmacocinética , Inmunoconjugados/farmacocinética , Receptor ErbB-2/antagonistas & inhibidores , Lectina 2 Similar a Ig de Unión al Ácido Siálico/antagonistas & inhibidores , Ado-Trastuzumab Emtansina/administración & dosificación , Ado-Trastuzumab Emtansina/farmacocinética , Animales , Antineoplásicos Inmunológicos/administración & dosificación , Antineoplásicos Inmunológicos/química , Benzodiazepinas/química , Brentuximab Vedotina/administración & dosificación , Brentuximab Vedotina/farmacocinética , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Inmunoconjugados/administración & dosificación , Ratones , Ratones Transgénicos , Pirroles/química , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Lectina 2 Similar a Ig de Unión al Ácido Siálico/metabolismo , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Duocarmycins [including cyclopropyl pyrroloindole (CPI) or cyclopropyl benzoindole (CBI)] are a class of DNA minor-groove alkylators and seco-CPI/CBIs are synthetic pro-forms that can spirocyclize to CPI/CBI. Bis-CPI/CBIs are potential drug candidates because of their enhanced cytotoxicity from DNA crosslinking, but it is difficult to analyze them for structure-activity correlation because of their DNA reactivity. To study their DNA alkylation, neutral thermal hydrolysis has been frequently applied to process depurination. However, unwanted side reactions under this condition have been reported, which could lead to poor correlation of DNA alkylation data with efficacy results, especially for bis-CPI/CBIs. In this study, an acidic depurination method was developed and applied for analysis of DNA alkylation and shown to be an easier and milder method than the traditional neutral thermal hydrolysis. DNA alkylation and stability of three bis-seco-CBIs were characterized in comparison with two mono-seco-CPIs. The results suggested that: 1) The acidic depurination method was capable of capturing a more representative population, sometimes a different population, of DNA adducts as they existed on DNA compared with the heat depurination method. 2) Di-adenine adducts were captured as expected for the CBI dimers, although the major type of adduct was still mono-adenine adducts. 3) The rate of DNA alkylation, DNA adduct profile, and relative amounts of di-adduct versus mono-adduct were significantly affected by the size, and possibly lipophilicity, of the nonalkylating part of the molecules. 4) Spirocyclization and amide hydrolysis represented two major pathways of degradation. Overall, by applying acidic depurination analyses, this study has illustrated DNA adduct characteristics of novel bis-seco-CBIs with dominating mono-alkylation and provides an alternative method for evaluating DNA minor-groove alkylators. These findings provide an effective analytical tool to evaluate DNA alkylators and to study the DNA alkylation that is a disposition mechanism of these compounds.
Asunto(s)
Alquilación/fisiología , Antineoplásicos Alquilantes/metabolismo , ADN/metabolismo , Duocarmicinas/metabolismo , Adenina/metabolismo , Alquilantes/metabolismo , Aductos de ADN/metabolismoRESUMEN
The valine-citrulline (Val-Cit) dipeptide and p-aminobenzyl (PAB) spacer have been commonly used as a cleavable self-immolating linker in ADC design including in the clinically approved ADC, brentuximab vedotin (Adcetris). When the same linker was used to connect to the phenol of the cyclopropabenzindolone (CBI) (P1), the resulting ADC1 showed loss of potency in CD22 target-expressing cancer cell lines (e.g., BJAB, WSU-DLCL2). In comparison, the conjugate (ADC2) of a cyclopropapyrroloindolone (CPI) (P2) was potent despite the two corresponding free drugs having similar picomolar cell-killing activity. Although the corresponding spirocyclization products of P1 and P2, responsible for DNA alkylation, are a prominent component in buffer, the linker immolation was slow when the PAB was connected as an ether (PABE) to the phenol in P1 compared to that in P2. Additional immolation studies with two other PABE-linked substituted phenol compounds showed that electron-withdrawing groups accelerated the immolation to release an acidic phenol-containing payload (to delocalize the negative charge on the anticipated anionic phenol oxygen during immolation). In contrast, efficient immolation of LD4 did not result in an active ADC4 because the payload (P4) had a low potency to kill cells. In addition, nonimmolation of LD5 did not affect the cell-killing potency of its ADC5 since immolation is not required for DNA alkylation by the center-linked pyrrolobenzodiazepine. Therefore, careful evaluation needs to be conducted when the Val-Cit-PAB linker is used to connect antibodies to a phenol-containing drug as the linker immolation, as well as payload potency and stability, affects the cell-killing activity of an ADC.
Asunto(s)
Supervivencia Celular/efectos de los fármacos , Inmunoconjugados/química , Inmunoconjugados/farmacología , Fenol/química , Fenol/farmacología , Antineoplásicos Inmunológicos/química , Antineoplásicos Inmunológicos/farmacología , Brentuximab Vedotina , Línea Celular Tumoral , Ciclopropanos/química , Ciclopropanos/farmacología , Humanos , Neoplasias/tratamiento farmacológicoRESUMEN
Previous investigations on antibody-drug conjugate (ADC) stability have focused on drug release by linker-deconjugation due to the relatively stable payloads such as maytansines. Recent development of ADCs has been focused on exploring technologies to produce homogeneous ADCs and new classes of payloads to expand the mechanisms of action of the delivered drugs. Certain new ADC payloads could undergo metabolism in circulation while attached to antibodies and thus affect ADC stability, pharmacokinetics, and efficacy and toxicity profiles. Herein, we investigate payload stability specifically and seek general guidelines to address payload metabolism and therefore increase the overall ADC stability. Investigation was performed on various payloads with different functionalities (e.g., PNU-159682 analog, tubulysin, cryptophycin, and taxoid) using different conjugation sites (HC-A118C, LC-K149C, and HC-A140C) on THIOMAB antibodies. We were able to reduce metabolism and inactivation of a broad range of payloads of THIOMAB antibody-drug conjugates by employing optimal conjugation sites (LC-K149C and HC-A140C). Additionally, further payload stability was achieved by optimizing the linkers. Coupling relatively stable sites with optimized linkers provided optimal stability and reduction of payloads metabolism in circulation in vivo.
Asunto(s)
Anticuerpos/química , Inmunoconjugados/química , Factores Inmunológicos/química , Preparaciones Farmacéuticas/química , Antígenos/inmunología , Sitios de Unión , Estabilidad de Medicamentos , Humanos , Inmunoconjugados/administración & dosificación , Inmunoconjugados/farmacocinética , Factores Inmunológicos/administración & dosificación , Factores Inmunológicos/farmacocinéticaRESUMEN
Antibody-drug conjugates (ADCs) represent a promising class of therapeutics for the targeted delivery of highly potent cytotoxic drugs to tumor cells to improve bioactivity while minimizing side effects. ADCs are composed of both small and large molecules and therefore have complex molecular structures. In vivo biotransformations may further increase the complexity of ADCs, representing a unique challenge for bioanalytical assays. Quadrupole-time-of-flight mass spectrometry (Q-TOF MS) with electrospray ionization has been widely used for characterization of intact ADCs. However, interpretation of ADC biotransformations with small mass changes, for the intact molecule, remains a limitation due to the insufficient mass resolution and accuracy of Q-TOF MS. Here, we have investigated in vivo biotransformations of multiple site-specific THIOMAB antibody-drug conjugates (TDCs), in the intact form, using a high-resolution, accurate-mass (HR/AM) MS approach. Compared with conventional Q-TOF MS, HR/AM Orbitrap MS enabled more comprehensive identification of ADC biotransformations. It was particularly beneficial for characterizing ADC modifications with small mass changes such as partial drug loss and hydrolysis. This strategy has significantly enhanced our capability to elucidate ADC biotransformations and help understand ADC efficacy and safety in vivo.
Asunto(s)
Inmunoconjugados/análisis , Espectrometría de Masa por Ionización de Electrospray/métodos , Animales , Biotransformación , Cromatografía Líquida de Alta Presión , Cromatografía de Fase Inversa , Inmunoconjugados/sangre , Ratones , Ratones SCID , Oligopéptidos/metabolismo , Ratas , Ratas Sprague-DawleyRESUMEN
Conjugation of small molecule payloads to cysteine residues on proteins via a disulfide bond represents an attractive strategy to generate redox-sensitive bioconjugates, which have value as potential diagnostic reagents or therapeutics. Advancement of such "direct-disulfide" bioconjugates to the clinic necessitates chemical methods to form disulfide connections efficiently, without byproducts. The disulfide connection must also be resistant to premature cleavage by thiols prior to arrival at the targeted tissue. We show here that commonly employed methods to generate direct disulfide-linked bioconjugates are inadequate for addressing these challenges. We describe our efforts to optimize direct-disulfide conjugation chemistry, focusing on the generation of conjugates between cytotoxic payloads and cysteine-engineered antibodies (i.e., THIOMAB antibody-drug conjugates, or TDCs). This work culminates in the development of novel, high-yielding conjugation chemistry for creating direct payload disulfide connections to any of several Cys mutation sites in THIOMAB antibodies or to Cys sites in other biomolecules (e.g., human serum albumin and cell-penetrating peptides). We conclude by demonstrating that hindered direct disulfide TDCs with two methyl groups adjacent to the disulfide, which have heretofore not been described for any bioconjugate, are more stable and more efficacious in mouse tumor xenograft studies than less hindered analogs.
Asunto(s)
Cisteína , Disulfuros/química , Inmunoconjugados/química , Péptidos/química , Ingeniería de Proteínas , Animales , Línea Celular Tumoral , Transformación Celular Neoplásica , Humanos , Inmunoconjugados/genética , RatonesRESUMEN
Affinity capture liquid chromatography-mass spectrometry (LC-MS) intact antibody assay has been widely used for direct drug-to-antibody ratio (DAR) and catabolite characterization of antibody-drug conjugates (ADCs). However, the intact mass spectra of new ADCs, which incorporate new types of linkers and payloads other than maytansines and auristatins, are more complex than those examined previously. The current method has showed some limitations in elucidating certain structural modifications. Herein, we report an alternative analytical approach for ADCs, such as THIOMAB antibody-drug conjugates (TDCs), where the linker drugs are site-specifically conjugated in the Fab region. The newly developed affinity capture LC-MS F(ab')2 assay incorporates affinity capture of human IgGs via binding to the Fab region, followed by on-bead IdeS digestion to remove the Fc domain specifically and uniformly. The resulting F(ab')2 (â¼100 kDa) fragments contain the key ADC biotransformation information, such as drug-to-antibody ratio and drug metabolism and are more readily analyzed by electrospray ionization LC-MS than the intact ADC (â¼150 kDa). The reduced size of analytes results in improved mass spectral sensitivity and resolution. In addition, the reduced and optimized sample preparation time, for example, rapid removal of the Fc fragment by IdeS digestion, minimizes assay artifacts of drug metabolism and skewed DAR profiles that may result from the prolonged incubation times (e.g., overnight enzymatic treatment for Fc deglycosylation). The affinity capture LC-MS F(ab')2 assay provides more detailed and accurate information on ADC biotransformations in vivo, enabling analysis of low-dose, labile, and complex site-specific ADCs with linker-drug conjugated in the Fab region.
Asunto(s)
Anticuerpos Monoclonales/química , Inmunoconjugados/análisis , Inmunoconjugados/química , Fragmentos Fab de Inmunoglobulinas/análisis , Inmunoglobulina G/análisis , Animales , Anticuerpos Monoclonales/inmunología , Biotransformación , Cromatografía Líquida de Alta Presión , Humanos , Inmunoconjugados/inmunología , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/inmunología , Inmunoglobulina G/química , Inmunoglobulina G/inmunología , Espectrometría de Masas , Ratas , Ratas Sprague-DawleyRESUMEN
Reversible protein thiol oxidation is an essential regulatory mechanism of photosynthesis, metabolism, and gene expression in photosynthetic organisms. Herein, we present proteome-wide quantitative and site-specific profiling of in vivo thiol oxidation modulated by light/dark in the cyanobacterium Synechocystis sp. PCC 6803, an oxygenic photosynthetic prokaryote, using a resin-assisted thiol enrichment approach. Our proteomic approach integrates resin-assisted enrichment with isobaric tandem mass tag labeling to enable site-specific and quantitative measurements of reversibly oxidized thiols. The redox dynamics of â¼2,100 Cys-sites from 1,060 proteins under light, dark, and 3-(3,4-dichlorophenyl)-1,1-dimethylurea (a photosystem II inhibitor) conditions were quantified. In addition to relative quantification, the stoichiometry or percentage of oxidation (reversibly oxidized/total thiols) for â¼1,350 Cys-sites was also quantified. The overall results revealed broad changes in thiol oxidation in many key biological processes, including photosynthetic electron transport, carbon fixation, and glycolysis. Moreover, the redox sensitivity along with the stoichiometric data enabled prediction of potential functional Cys-sites for proteins of interest. The functional significance of redox-sensitive Cys-sites in NADP-dependent glyceraldehyde-3-phosphate dehydrogenase, peroxiredoxin (AhpC/TSA family protein Sll1621), and glucose 6-phosphate dehydrogenase was further confirmed with site-specific mutagenesis and biochemical studies. Together, our findings provide significant insights into the broad redox regulation of photosynthetic organisms.
Asunto(s)
Proteínas Bacterianas/genética , Cisteína/química , Regulación Bacteriana de la Expresión Génica , Proteoma/genética , Compuestos de Sulfhidrilo/química , Synechocystis/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Ciclo del Carbono/efectos de los fármacos , Ciclo del Carbono/genética , Cisteína/metabolismo , Diurona/toxicidad , Transporte de Electrón/efectos de los fármacos , Transporte de Electrón/genética , Glucosafosfato Deshidrogenasa/química , Glucosafosfato Deshidrogenasa/genética , Glucosafosfato Deshidrogenasa/metabolismo , Gliceraldehído 3-Fosfato Deshidrogenasa (NADP+)/química , Gliceraldehído 3-Fosfato Deshidrogenasa (NADP+)/genética , Gliceraldehído 3-Fosfato Deshidrogenasa (NADP+)/metabolismo , Glucólisis/efectos de los fármacos , Glucólisis/genética , Herbicidas/toxicidad , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Peroxirredoxinas/química , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Fotoperiodo , Fotosíntesis/efectos de los fármacos , Fotosíntesis/genética , Proteoma/química , Proteoma/metabolismo , Estereoisomerismo , Synechocystis/efectos de los fármacos , Synechocystis/metabolismoRESUMEN
Anterior gradient 2 (AGR2) is a secreted, cancer-associated protein in many types of epithelial cancer cells. We developed a highly sensitive targeted mass spectrometric assay for quantification of AGR2 in urine and serum. Digested peptides from clinical samples were processed by PRISM (high pressure and high resolution separations coupled with intelligent selection and multiplexing), which incorporates high pH reversed-phase liquid chromatography (LC) separations to fractionate and select target fractions for follow-on LC-selected reaction monitoring (LC-SRM) analyses. The PRISM-SRM assay for AGR2 showed a reproducibility of <10% CV and limit of quantification (LOQ) values of â¼130 pg/mL in serum and â¼10 pg per 100 µg of total protein mass in urine, respectively. A good correlation (R(2) = 0.91) was observed for the measurable AGR2 concentrations in urine between SRM and enzyme-linked immunosorbent assay (ELISA). On the basis of an initial cohort of 37 subjects, urinary AGR2/PSA concentration ratios showed a significant difference (P = 0.026) between noncancer and cancer. Large clinical cohort studies are needed for the validation of AGR2 as a useful diagnostic biomarker for prostate cancer. Our work validated the approach of identifying candidate secreted protein biomarkers through genomics and measurement by targeted proteomics, especially for proteins where no immunoassays are available.
Asunto(s)
Espectrometría de Masas/métodos , Proteínas/metabolismo , Secuencia de Aminoácidos , Calibración , Cromatografía de Fase Inversa , Humanos , Concentración de Iones de Hidrógeno , Límite de Detección , Datos de Secuencia Molecular , Mucoproteínas , Proteínas Oncogénicas , Proteínas/químicaRESUMEN
We achieve laser frequency stabilization by a simple technique based on sub-Doppler dichroic atomic vapor laser lock (DAVLL) in atomic cesium. The technique that combines saturated-absorption spectroscopy and Zeeman splitting of hyperfine structures allows us to obtain a modulation-free dispersion-like error signal for frequency stabilization. For the error signal, the dependence of peak-to-peak amplitude and the slope at the zero-crossing point on the magnetic field is studied by simulation and experiment. Based on the result, we obtain an available sub-Doppler DAVLL error signal with high sensitivity to the frequency drift by selecting an appropriate strength of the magnetic field. Ultimately, the fluctuation of the locked laser frequency is confined to below 0.5 MHz in a long term, exhibiting efficient suppression of frequency noise.
RESUMEN
Postoperative cognitive dysfunction (POCD) is a prevalent neurological complication that can impair learning and memory for days, months, or even years after anesthesia/surgery. POCD is strongly associated with an altered composition of the gut microbiota (dysbiosis), but the accompanying metabolic changes and their role in gut-brain communication and POCD pathogenesis remain unclear. Here, the present study reports that anesthesia/surgery in aged mice induces elevated intestinal indoleamine 2,3-dioxygenase (IDO) expression and activity, which shifts intestinal tryptophan (TRP) metabolism toward more IDO-catalyzed kynurenine (KYN) and less gut bacteria-catabolized indoleacetic acid (IAA). Both anesthesia/surgery and intraperitoneal KYN administration induce increased KYN levels that correlate with impaired spatial learning and memory, whereas dietary IAA supplementation attenuates the anesthesia/surgery-induced cognitive impairment. Mechanistically, anesthesia/surgery increases interferon-γ (IFN-γ)-producing group 1 innate lymphoid cells (ILC1) in the small intestine lamina propria and elevates intestinal IDO expression and activity, as indicated by the higher ratio of KYN to TRP. The IDO inhibitor 1-MT and antibodies targeting IFN-γ or ILCs mitigate anesthesia/surgery-induced cognitive dysfunction, suggesting that intestinal ILC1 expansion and the ensuing IFN-γ-induced IDO upregulation may be the primary pathway mediating the shift to the KYN pathway in POCD. The ILC1-KYN pathway in the intestine could be a promising therapeutic target for POCD.
RESUMEN
Hematopoietic progenitor kinase 1 (HPK1) serves a key immunosuppressive role as a negative regulator of T-cell receptor (TCR) signaling. HPK1 loss-of-function is associated with augmentation of immune function and has demonstrated synergy with immune checkpoint inhibitors in syngeneic mouse cancer models. These data offer compelling evidence for the use of selective small molecule inhibitors of HPK1 in cancer immunotherapy. We identified a novel series of isoquinoline HPK1 inhibitors through fragment-based screening that displayed promising levels of biochemical potency and activity in functional cell-based assays. We used structure-based drug design to introduce key selectivity elements while simultaneously addressing pharmacokinetic liabilities. These efforts culminated in a molecule demonstrating subnanomolar biochemical inhibition of HPK1 and strong in vitro augmentation of TCR signaling in primary human T-cells. Further profiling of this molecule revealed excellent kinase selectivity (347/356 kinases <50% inhibition @ 0.1 µM), a favorable in vitro safety profile, and good projected human pharmacokinetics.
RESUMEN
Reversible disulfide oxidation between proximal cysteines in proteins represents a common regulatory control mechanism to modulate flux through metabolic pathways in response to changing environmental conditions. To enable in vivo measurements of cellular redox changes linked to disulfide bond formation, we have synthesized a cell-permeable thiol-reactive affinity probe (TRAP) consisting of a monosubstituted cyanine dye derivatized with arsenic (i.e., TRAP_Cy3) to trap and visualize dithiols in cytosolic proteins. Alkylation of reactive thiols prior to displacement of the bound TRAP_Cy3 by ethanedithiol permits facile protein capture and mass spectrometric identification of proximal reduced dithiols to the exclusion of individual cysteines. Applying TRAP_Cy3 to evaluate cellular responses to increases in oxygen and light levels in the photosynthetic microbe Synechococcus sp. PCC7002, we observe large decreases in the abundance of reduced dithiols in cellular proteins, which suggest redox-dependent mechanisms involving the oxidation of proximal disulfides. Under these same growth conditions that result in the oxidation of proximal thiols, there is a reduction in the abundance of post-translational oxidative protein modifications involving methionine sulfoxide and nitrotyrosine. These results suggest that the redox status of proximal cysteines responds to environmental conditions, acting to regulate metabolic flux and minimize the formation of reactive oxygen species to decrease oxidative protein damage.
Asunto(s)
Arsénico/metabolismo , Carbocianinas/metabolismo , Colorantes Fluorescentes/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Synechococcus/metabolismo , Arsénico/química , Carbocianinas/síntesis química , Carbocianinas/química , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/química , Estructura Molecular , Oxidación-Reducción , Compuestos de Sulfhidrilo/química , Synechococcus/química , Synechococcus/citologíaRESUMEN
BACKGROUND: Pediatric liver transplantation is an important modality for treating biliary atresia. The overall survival (OS) rate of pediatric liver transplantation has significantly improved compared with that of 20 years ago, but it is still unsatisfactory. The anesthesia strategy of maintaining low central venous pressure (CVP) has shown a positive effect on prognosis in adult liver transplantation. However, this relationship remains unclear in pediatric liver transplantation. Thus, this study was conducted to review the data of pediatric living-donor liver transplantation to analyze the associations of different CVP levels with the prognosis of recipients. METHODS: This was a retrospective study and the patients were divided into two groups according to CVP levels after abdominal closure: low CVP (LCVP) (≤ 10 cmH2O, n = 470) and high CVP (HCVP) (> 10 cmH2O, n = 242). The primary outcome measured in the study was the overall survival rate. The secondary outcomes included the duration of mechanical ventilation in the intensive care unit (ICU), length of stay in the ICU, and postoperative stay in the hospital. Patient demographic and perioperative data were collected and compared between the two groups. Kaplan-Meier curves were constructed to determine the associations of different CVP levels with the survival rate. RESULTS: In the study, 712 patients, including 470 in the LCVP group and 242 in the HCVP group, were enrolled. After propensity score matching, 212 pairs remained in the group. The LCVP group showed a higher overall survival rate than the HCVP group in the Kaplan-Meier curves and multivariate Cox regression analyses (P = 0.018), and the HCVP group had a hazard ratio of 2.445 (95% confidence interval, 1.163-5.140). CONCLUSION: This study confirmed that a low-CVP level at the end of surgery is associated with improved overall survival and a shorter length of hospital stay.