Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Soft Matter ; 18(35): 6572-6581, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-35959627

RESUMEN

New questions and conjectures are raised on the crystal-crystal phase transition of isotactic polybutene-1 (iPB-1) containing nanofiller in the flow field. In this work, we investigate the phase transition from flow-induced oriented form II to I in iPB-1 blends with multi-walled carbon nanotubes (MWCNTs) with a homemade two-drum extensional rheometer combined with in situ wide-angle X-ray diffraction (WAXD) measurements. The MWCNTs show a limited promoting effect on the phase transition kinetics under quiescent conditions, while the phase transition kinetic is highly accelerated with the impose of melt-extension. When the loading extension strain is 0.5 or 2.0, the half time of phase transition (t1/2) is shortened from tens of hours to a few hours, depending on the melt-extension strain and the MWCNTs content in iPB-1. When the extension strain increases to 3.5, t1/2 decreases to about 30 min, which is independent of the MWCNTs content in all iPB-1 blends except in blends with MWCNTs content of 1%, where the phase transition rate in the middle and late stages is restrained. It's speculated that flow-induced molecular orientation or shish-kebab morphology affects the internal stress or stress transfer. The addition of a nanofiller enlarged the effect of melt-extension through strengthening the localized intensity of flow field. In general, the combination of nanofiller and melt-extension can obviously promote the phase transition kinetics.

2.
Arch Environ Contam Toxicol ; 80(1): 234-247, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33222007

RESUMEN

Cadmium (Cd) is a harmful element to human health and biodiversity. The removal of Cd from groundwater is of great significance to maintain the environmental sustainability and biodiversity. In this work, a novel low-temperature roasting associated with alkali was applied to synthesize an eco-friendly adsorbent using coal fly ash. Scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray fluorescence, and X-ray photoelectron spectroscopy were applied to analyze the physical and chemical characteristics of the adsorbent. The experiments show that a significant improvement in specific surface area and activity of adsorbent was observed in this study. The functional groups of Na-O and Fe-O were verified to be beneficial in the removal of Cd2+. The material capacity to adsorb Cd2+ was considerably improved, and the maximum uptake capacity was 61.8 mg g-1 for Cd2+ at 25 °C. Furthermore, pH and ionic strength play critical roles in the adsorption process. The Langmuir and pseudo-second-order models can appropriately describe the adsorption behavior, and the enhanced adsorption ability of Cd2+ by modified coal fly ash was attributed to ion-exchange, co-precipitation, and complexation. Higher sorption efficiency was maintained after two regeneration cycles. These results offer valuable insights to develop high-performance adsorbent for Cd2+ removal.


Asunto(s)
Aluminio/química , Cadmio/análisis , Restauración y Remediación Ambiental/métodos , Agua Subterránea/química , Nanoestructuras/química , Silicio/química , Contaminantes Químicos del Agua/análisis , Adsorción , Ceniza del Carbón/química , Humanos , Concentración de Iones de Hidrógeno , Cinética , Modelos Teóricos , Espectroscopía Infrarroja por Transformada de Fourier
3.
Arch Environ Contam Toxicol ; 80(1): 74-91, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33146757

RESUMEN

Groundwater is essential for the sustainable development of the Guanzhong Basin, China, and its quality is mainly controlled by hydrogeochemical processes and anthropogenic pollution. This study used statistical and multivariate statistical analysis approaches to recognize the hydrogeochemical processes and affecting factors of groundwater in the central part of the Guanzhong Basin. Correlations among 14 hydrochemical parameters were statistically examined. Principal component analysis (PCA), factor analysis (FA), and hierarchical cluster analysis (HCA) techniques were applied to analyze the physicochemical variables to understand the affecting factors of groundwater quality in the study area. The correlation analysis results indicate that cation exchange is the dominant process affecting the concentration of Na+ and Ca2+ in the groundwater. Both the PCA and FA indicate that minerals dissolution/precipitation and human activities are the key factors that affect groundwater quality. All parameters except CO32- and pH increase from C1 to C4 obtained through the Q mode HCA. C4 has a hydrochemical type of SO4-Na·K, indicating that the sample of this cluster is primarily influenced by anthropogenic processes.


Asunto(s)
Monitoreo del Ambiente/métodos , Agua Subterránea , Contaminantes Químicos del Agua/análisis , Calidad del Agua/normas , Abastecimiento de Agua/métodos , China , Análisis por Conglomerados , Agua Subterránea/análisis , Agua Subterránea/química , Humanos , Análisis Multivariante , Análisis de Componente Principal , Abastecimiento de Agua/estadística & datos numéricos
4.
Langmuir ; 36(1): 250-256, 2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-31697894

RESUMEN

Large scaled two-dimensional free-standing monolayer films of gold nanoparticles show distinctive optical, electrical, and chem-physical propertie making them a new class of advanced plasmonic materials differing from bulk materials and individual nanoparticles in solution. The conventional 2D gold nanoparticle films usually possess symmetric structures and identical properties of gold nanoparticles on both sides. Herein, we developed an easy and efficient approach to construct a new type of free-standing 2D gold nanoparticle monolayer film with asymmetric gold nanoparticle structures and functions, called a 2D Janus gold nanoparticle film. The remarkable feature of our method is the subsequent asymmetric growth on one side of the interfacial self-assembled gold nanoparticle monolayer film at the air-liquid interface. It is very easy to control the morphology of the Janus film by simply and precisely adjusting the size and shape of the gold nanoparticles on the top side, and selectively tuning the structure and composition on the bottom side of the film by growing gold nanoparticles or other noble metals such as Ag, Pt, and Pd. Unlike the conventionally prepared Janus films at solid substrate that require long-time etching and transfer procedures, other features of our method include the short time in which the interfacial self-assembly and the subsequent asymmetric growth are completed as well as the easily transferable property of the Janus film onto different substrates, such as quartz glass sheets, silicon wafers, and PDMS. The obtained Janus gold nanoparticle film shows asymmetric wettabilities, optical properties, and surface-enhanced Raman scattering (SERS) effects, which is promising for a range of potential applications in optical devices, sensors, and asymmetric catalysis.

5.
Chem Rec ; 20(11): 1314-1337, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32959523

RESUMEN

Due to special non-metallic polar bond between the III group (with certain metallic properties) element boron (B) and the V group element nitrogen (N), boron nitride (BN) has unique physical and chemical properties such as strong high-temperature resistance, oxidation resistance, heat conduction, electrical insulation and neutron absorption. Its unique lamellar, reticular and tubular morphologies and physicochemical properties make it attractive in the fields of adsorption, catalysis, hydrogen storage, thermal conduction, insulation, dielectric substrate of electronic devices, radiation protection, polymer composites, medicine, etc. Therefore, the synthesis and properties of BN derived materials become the main research hotspots of low-dimensional nanomaterials. This paper reviews the synthetic methods, overall properties, and applications of BN nanostructures and nanocomposites. In addition, challenges and prospect of this kind of materials are discussed.

6.
Soft Matter ; 2020 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-32909580

RESUMEN

This work investigated the crystalline forms obtained from melt crystallization in the isotactic polybutene-1 (iPB-1) homopolymer via manipulation of the temperature at which samples were melted (Tmelt) and crystallization pressure (Pcry). Unlike the results under atmospheric conditions where the molten sample crystallized into the pure form II and the crystallization temperature and kinetics were affected obviously by Tmelt, the melted sample crystallized into forms II or I' under high pressure, depending on Tmelt and Pcry. The content of form I' decreases with increasing Tmelt or decreasing Pcry. Meanwhile, the critical pressure for the formation of pure form I' increases with increasing Tmelt. The formation of form I' is attributed to the memory effect of the melt which preserved some ordered sequence of crystal and the high pressure (Pcry) which suppressed the nucleation and growth of the kinetically favored form II, which results in the formation of form I'. In addition, the melt crystallized form II transforms to form I under high pressure conditions; thus forms I, I' and II are observed. The relative contents of the three crystalline forms on samples for different Tmelt and Pcry are obtained in this work. The result shows that the crystalline forms in melt crystallization of iPB-1 can be customized by regulating the melt state and crystallization conditions.

7.
Chem Rev ; 118(4): 1840-1886, 2018 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-29350931

RESUMEN

Flow-induced crystallization (FIC) is a typical nonequilibrium phase transition and a core industry subject for the largest group of commercially useful polymeric materials: semicrystalline polymers. A fundamental understanding of FIC can benefit the research of nonequilibrium ordering in matter systems and help to tailor the ultimate properties of polymeric materials. Concerning the crystallization process, flow can accelerate the kinetics by orders of magnitude and induce the formation of oriented crystallites like shish-kebab, which are associated with the major influences of flow on nucleation, that is, raised nucleation density and oriented nuclei. The topic of FIC has been studied for more than half a century. Recently, there have been many developments in experimental approaches, such as synchrotron radiation X-ray scattering, ultrafast X-ray detectors with a time resolution down to the order of milliseconds, and novel laboratory devices to mimic the severe flow field close to real processing conditions. By a combination of these advanced methods, the evolution process of FIC can be revealed more precisely (with higher time resolution and on more length scales) and quantitatively. The new findings are challenging the classical interpretations and theories that were mostly derived from quiescent or mild-flow conditions, and they are triggering the reconsideration of FIC foundations. This review mainly summarizes experimental results, advances in physical understanding, and discussions on the multiscale and multistep nature of oriented nuclei induced by strong flow. The multiscale structures include segmental conformation, packing of conformational ordering, deformation on the whole-chain scale, and macroscopic aggregation of crystallites. The multistep process involves conformation transition, isotropic-nematic transition, density fluctuation (or phase separation), formation of precursors, and shish-kebab crystallites, which are possible ordering processes during nucleation. Furthermore, some theoretical progress and modeling efforts are also included.

8.
Anal Chem ; 91(23): 14792-14802, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31692335

RESUMEN

Electrochemiluminescence immunoassays are usually carried out through "on-electrode" strategy, i.e., sandwich-type immunoassay format, the sensitivity of which is restricted by two key bottlenecks: (1) the number of signal labels is limited and (2) only a part of signal labels could participate in the electrode reaction. In this Perspective, we discuss the development of an "in-electrode" Faraday-cage-type concept-based immunocomplex immobilization strategy. The biggest difference from the traditional sandwich-type one is that the designed "in-electrode" Faraday-cage-type immunoassay uses a conductive two-dimensional (2-D) nanomaterial simultaneously coated with signal labels and a recognition component as the detection unit, which could directly overlap on the electrode surface. In such a case, electrons could flow freely from the electrode to the detection unit, the outer Helmholtz plane (OHP) of the electrode is extended, and thousands of signal labels coated on the 2-D nanomaterial are all electrochemically "effective." Thus, then, the above-mentioned bottlenecks obstructing the improvement of the sensitivity in sandwich-type immunoassay are eliminated, and as a result a much higher sensitivity of the Faraday-cage-type immunoassay can be obtained. And, the applications of the proposed versatile "in-electrode" Faraday-cage-type immunoassay have been explored in the detection of target polypeptide, protein, pathogen, and microRNA, with the detection sensitivity improved tens to hundreds of times. Finally, the outlook and challenges in the field are summarized. The rise of Faraday-cage-type electrochemiluminescence immunoassay (FCT-ECLIA)-based biosensing strategies opens new horizons for a wide range of early clinical identification and diagnostic applications.


Asunto(s)
Anticuerpos/química , Técnicas Biosensibles , Técnicas Electroquímicas , Inmunoensayo , Nanoestructuras/química , Electrodos , Óxido Ferrosoférrico/química , Oro/química , Grafito/química , Humanos , Límite de Detección , Luminiscencia , MicroARNs/análisis , Neurotensina/análisis , Vibrio parahaemolyticus/química , Vibrio parahaemolyticus/aislamiento & purificación , Vibrio vulnificus/química , Vibrio vulnificus/aislamiento & purificación , Factores de Transcripción p300-CBP/análisis
9.
Langmuir ; 35(51): 16900-16906, 2019 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-31789036

RESUMEN

Gold-silver (Au@Ag) core-shell nanostructures have a stronger surface plasma response, wider absorption and scattering in the UV-vis-NIR region, and distinctive optical properties, which are widely explored in biosensors, information processing, photothermal therapy, and catalysis. Core-shell nanostructures are usually formed by the deposition of the second metal atoms onto the first core metal particles via the chemical wet method. The conventional approaches for the manipulation of the shape usually were done by homogeneous growth or etching of isotropic nanoparticles. Through in situ modification of the first metal core at the different locations, the different growth model of the second metal can be regulated to control the shapes of core-shell structures. Herein, we modified the gold nanorods (AuNRs) asymmetrically at the end and side parts using thiolated molecules to regulate the morphology of gold nanorod@silver (AuNR@Ag) core-shell nanoparticles. Interestingly, the obvious eccentric nanostructures of AuNR@Ag core-shell nanoparticles were obtained with the increase of the molecular weight of macromolecules modified at the end of AuNRs. Therefore the growth mode was adjusted from Frank-van der Merwe mode to Stranski-Krastanow mode. By changing the length of the hydrocarbon chain and functional groups of the small mercaptan molecules at the side of AuNRs, the silver shell exhibits selective growth at the side of the AuNRs, resulting in heterogeneous core-shell nanoparticles and various shapes of the AuNR@Ag core-shell. Our method opens up a new avenue toward preparing core-shell nanostructures with controlled shapes, and the obtained structures are promising in various applications.

10.
Analyst ; 144(21): 6291-6303, 2019 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-31549693

RESUMEN

In the emergency diagnosis of patients, acute myocardial infarction (AMI) is always time-consuming to diagnose, and the process requires multiple laboratory procedures, expensive equipment and skilled workers. Herein, we developed an easy-to-use, low-cost and portable fluorescent lateral flow immunoassay based on paper microfluidics for the point-of-care diagnostics of non-communicable diseases. The fluorescent lateral flow immunoassay can produce results in less than 10 minutes, and the limit of detection (LOD) is 0.019 ng ml-1. The slope was linear from 0 to 100 ng ml-1; the equation is y = 0.0342e2.1181x and R2 = 0.9618, which are distinctive features that ensure maximum amplification of the signal and recording of quantitative values by an analyser. The detection sensitivity showed an exceptional increase to 0.01 ng ml-1. Compared with conventional bioassay readers, our analyser shows some advantages to easily, clearly and effectively read data. The present point-of-care test for cardiac troponin I decreases the turnaround time and has a high coefficient of variation even at lower concentrations of troponin. So, the development of lateral flow assay-based point-of-care assays with higher analytical performance for real world samples can decrease the rule-out time for AMI in emergency departments and other fields.


Asunto(s)
Técnicas y Procedimientos Diagnósticos/instrumentación , Inmunoensayo/instrumentación , Dispositivos Laboratorio en un Chip , Enfermedades no Transmisibles , Papel , Sistemas de Atención de Punto , Colodión/química , Membranas Artificiales , Miocardio/metabolismo , Espectrometría de Fluorescencia , Troponina T/análisis , Troponina T/metabolismo
11.
Soft Matter ; 14(13): 2535-2546, 2018 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-29538472

RESUMEN

Fibrillation and the complexation reaction between poly(vinyl alcohol) (PVA)-iodine (i) complexes have been studied with in situ synchrotron radiation small- and wide-angle X-ray scattering (SAXS and WAXS) during the uniaxial stretching of PVA films in KI/I2 aqueous solution. SAXS results show that stretching induces the formation of nanofibrils, which pack periodically in the later stage of stretching with an average inter-fibrillar distance of around 10 nm. The onset strains for fibrillation and the appearance of periodicity of nanofibrils are located at the beginning and the end of the stress plateau, and decrease with increasing iodine concentration. In the stretching process as a whole, the presence of iodine ions reduces the crystallinity of the PVA crystal but favors the formation of a PVA-I complex. The complexation reaction is promoted by the synergistic effect of stretch and iodine ions, during which stretching drives the formation of polyiodine via the effect of entropic reduction while iodine concentration dictates crystallization of PVA-I3- co-crystals through the role of chemical potential. A morphological and structural phase diagram is constructed in the strain-iodine concentration space, which defines the regions for fibrillation and complexation reactions and may serve as a roadmap for the industrial processing of PVA polarizer.

12.
Soft Matter ; 13(19): 3475-3479, 2017 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-28440381

RESUMEN

We report diverse meso-phase arrangements of supra-molecular nanotubes assembled by ionic benzene-1,3,5-tricarboxamide (BTA) molecules in water; their transition pathway and equilibrium structure are controlled by the helical structure. Besides, the different sensitivity to the condition of initial solutions is revealed for the final rectangular phase and the intermediate phase.

13.
Soft Matter ; 13(19): 3639-3648, 2017 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-28447701

RESUMEN

Structural and morphological transitions of flow-induced crystallization (FIC) in poly(1-butene) (PB-1) melt have been studied by combining extensional rheology and in situ synchrotron radiation ultrafast wide- and small-angle X-ray scattering (WAXD/SAXS) measurements. Unexpectedly, metastable Form III is crystallized directly from the PB-1 melt by high-speed extension, which has a short lifetime of several tens of milliseconds and manifests the thermodynamic and kinetic competition among Form III, Form II and melt under flow. Relative crystallinity evolution of Form II after extension reveals a crystal melting dominated process within the observation time of 120 s even under high supercooling. This is opposite to the common case of FIC but supports the idea that flow alters the obtained crystal size and its thermodynamic stability. Additionally, a morphological transition from a flow-induced network to shish is observed by SAXS with increasing extension temperature from below to above the melting point of Form II. With above observations, we construct nonequilibrium structural and morphological diagrams of FIC in strain rate-temperature space, which may guide the industrial processing of the PB-1 material.

14.
Macromol Rapid Commun ; 37(17): 1441-5, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27376630

RESUMEN

With a combination of fast extension rheometer and in situ synchrotron radiation ultra-fast small- and wide-angle X-ray scattering, flow-induced crystallization (FIC) of isotactic polypropylene (iPP) is studied at temperatures below and above the melting point of α crystals (Tmα). A flow phase diagram of iPP is constructed in strain rate-temperature space, composing of melt, non-crystalline shish, α and α&ß coexistence regions, based on which the kinetic and dynamic competitions among these four phases are discussed. Above Tmα , imposing strong flow reverses thermodynamic stabilities of the disordered melt and the ordered phases, leading to the occurrence of FIC of ß and α crystals as a dynamic phase transition. Either increasing temperature or stain rate favors the competiveness of the metastable ß over the stable α crystals, which is attributed to kinetic rate rather than thermodynamic stability. The violent competitions among four phases near the boundary of crystal-melt may frustrate crystallization and result in the non-crystalline shish winning out.


Asunto(s)
Transición de Fase , Polipropilenos/química , Cristalización , Cinética , Termodinámica
15.
ACS Appl Mater Interfaces ; 15(1): 378-390, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36594213

RESUMEN

Most enzyme catalysts are unable to achieve effective oxidation resistance because of the monotonous mimicking function or production of secondary reactive oxygen species (ROS). Herein, the Au@Cu2O heterostructure with multienzyme-like activities is deigned, which has significantly improved antioxidant capacity compared with pure Cu2O for the scavenging of highly cell-damaging secondary ROS, i.e.,·OH. Experiments and theoretical calculations show that the heterostructure exhibits a built-in electric field and lattice mismatch at the metal-semiconductor interface, which facilitate to generate abundant oxygen vacancies, redox couples, and surface electron deficiency. On the one hand, the presence of rich oxygen vacancies and redox couple can enhance the adsorption and activation of oxygen-containing ROS (including O2·- and H2O2). On the other hand, the electron transfer between the electron-deficient Au@Cu2O surface and electron donor would promote peroxide-like activity and avoid producing ·OH. Importantly, endogenous ·OH could be eliminated in both acidic and neutral conditions, which is no longer limited by the volatile physiological environment. Therefore, Au@Cu2O can simulate superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and glutathione peroxidase (GPx) to form a complete antioxidant system. The deigned nanoenzyme is explored in the real sample world such as A549 cells and zebrafish. This work provides theoretical and practical strategies for the construction of a complete antioxidant enzyme system.


Asunto(s)
Antioxidantes , Peróxido de Hidrógeno , Animales , Especies Reactivas de Oxígeno , Pez Cebra , Oxígeno , Superóxido Dismutasa/química , Catalasa/química
16.
Chemosphere ; 301: 134789, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35504470

RESUMEN

Microplastics (MPs) are one of the emerging classes of pollutants that can be infiltrated into any aqueous solutions from disposed toxic metals and antibiotics, further exacerbating the potential biotoxicity of MPs. However, the research on the interaction between MPs and various pollutants is limited. Therefore, in this study, the changes in toxicity of polybutylece terephthalate (PBT) MPs were assessed following adsorption of heavy metals and antibiotics. The adsorption behavior of Cd(II) and tetracycline (TC) on ultraviolet (UV) light-aged PBT was investigated. The results demonstrated that the Cd(II) adsorption behavior could be described by the pseudo-second-order kinetic and Langmuir isothermal models, while the TC adsorption behavior has well fitted using Elovich and Sips models. The whole adsorption process occurred via either external diffusion or internal diffusion. The interactions between aged PBT and pollutants were evaluated under different environmental conditions, such as solution pH and the concentrations of dissolved organic matter and cations. The amounts of Cd(II) and TC adsorbed were higher in the competitive systems than the single solution, which might attribute to the formation of Cd(II)-TC complexes and aged PBT functional group changes. The results of two-dimensional correlation spectroscopy (2D-COS) describes the sequence of functional group transformation during the uptake of Cd(II)-TC by aged PBT in binary systems. These findings identify a strong interaction between aged PBT and contaminants, establishing the potential fate of aged MPs under natural aquatic environment conditions.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Adsorción , Antibacterianos , Cadmio/química , Microplásticos , Ácidos Ftálicos , Plásticos/química , Tetraciclina , Contaminantes Químicos del Agua/análisis
17.
Environ Pollut ; 298: 118852, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35033617

RESUMEN

Groundwater nitrate (NO3-) pollution is a worldwide environmental problem. Therefore, identification and partitioning of its potential sources are of great importance for effective control of groundwater quality. The current study was carried out to identify the potential sources of groundwater NO3- pollution and determine their apportionment in different land use/land cover (LULC) types in a traditional agricultural area, Weining Plain, in Northwest China. Multiple hydrochemical indices, as well as dual NO3- isotopes (δ15N-NO3 and δ18O-NO3), were used to investigate the groundwater quality and its influencing factors. LULC patterns of the study area were first determined by interpreting remote sensing image data collected from the Sentinel-2 satellite, then the Bayesian stable isotope mixing model (MixSIAR) was used to estimate proportional contributions of the potential sources to groundwater NO3- concentrations. Groundwater quality in the study area was influenced by both natural and anthropogenic factors, with anthropological impact being more important. The results of LULC revealed that the irrigated land is the dominant LULC type in the plain, covering an area of 576.6 km2 (57.18% of the total surface study area of the plain). On the other hand, the results of the NO3- isotopes suggested that manure and sewage (M&S), as well as soil nitrogen (SN), were the major contributors to groundwater NO3-. Moreover, the results obtained from the MixSIAR model showed that the mean proportional contributions of M&S to groundwater NO3- were 55.5, 43.4, 21.4, and 78.7% in the forest, irrigated, paddy, and urban lands, respectively. While SN showed mean proportional contributions of 29.9, 43.4, 61.5, and 12.7% in the forest, irrigated, paddy, and urban lands, respectively. The current study provides valuable information for local authorities to support sustainable groundwater management in the study region.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Teorema de Bayes , China , Monitoreo del Ambiente , Nitratos/análisis , Isótopos de Nitrógeno/análisis , Contaminantes Químicos del Agua/análisis
18.
Chemosphere ; 300: 134569, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35421440

RESUMEN

Irrigation and fertilizer application can lead to significant changes in groundwater quality. In this study, a field irrigation experiment was carried out from April 9 to 23, 2021 under irrigation and fertigation conditions to understand the mechanisms of moisture movement, soil salt migration, and nitrogen transformation in the soil profile. Continuous in-situ monitoring and sampling of soil and irrigation water, as well as stable isotopes, chemical parameters, and soluble salt analyses, were performed in this research. The results showed that the time cost by the irrigation water in the vadose zone was about 5 h. The infiltrated irrigation water was accompanied by high concentrations of soluble salts, leached from the soil layers of 20-80 cm and 100-150 cm, which is associated with the leaching of Na+, Cl-, SO42-, and Ca2+ and the dissolution of minerals such as gypsum and halite. Furthermore, the variations in nitrogen concentrations (NH4+ and NO3-) in the soil profile suggested that fertilizer application was the main source of NO3- in the soil and groundwater, while irrigation was the biggest driving force for nitrogen transport and transformation in soil. The application of urea fertilizer can increase the content of ammonium nitrogen at the soil layer of 0-80 cm. This nitrogen form can be subsequently transformed to nitrate nitrogen during the water transport to the groundwater. The current study provides a strong scientific basis for the protection and management of groundwater and soil quality in agricultural areas.


Asunto(s)
Agua Subterránea , Suelo , Riego Agrícola/métodos , Fertilizantes/análisis , Nitratos/análisis , Nitrógeno/análisis , Cloruro de Sodio , Suelo/química , Agua/análisis
19.
ACS Sens ; 7(10): 3126-3134, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36206537

RESUMEN

Tacrolimus (FK506) is widely used in the prevention of organ transplant rejection and the treatment of autoimmune diseases, but it is difficult to detect within the low and narrow concentration range in practical clinical fields. A magnetic plasmonic superstructure-targets-plasmonic superstructure-based sandwich-type SERS biosensor is presented here to ultrasensitively detect FK506 in the blood of organ transplant patients. The spiky Fe3O4@SiO2@Ag flower magnetic superstructure and hollow Ag@Au superstructure enhanced the SERS signals by providing rich sharp tips, cavities, and abundant hot spot gaps. And the magnetic feature makes it easy to concentrate and separate the biological target. Using the designed sandwich-type SERS biosensor, FK506 could be detected within a range of 0.5-20 ng/mL with a detection limit of 0.33 ng/mL. All results indicated that the sandwich-type SERS biosensor has good stability, sensitivity, and anti-interference properties. It is noteworthy that this allowed us to successfully analyze FK506 in the blood of transplant patients, which is in strong agreement with the clinical results. Consequently, the attractive sandwich-type SERS biosensor can be used for the detection of FK506 in real samples, which is promising for clinical diagnosis.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Humanos , Oro/química , Nanopartículas del Metal/química , Tacrolimus , Espectrometría Raman/métodos , Dióxido de Silicio , Técnicas Biosensibles/métodos
20.
Nanoscale Horiz ; 7(5): 554-561, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35347336

RESUMEN

Generally, a high quality surface-enhanced Raman spectroscopy (SERS) substrate often requires a highly-tailorable electromagnetic (EM) field generated at nanoparticle (NP) surfaces by the regulation of the morphologies, components and roughness of NPs. However, most recent universal approaches are restricted to single components, and integrating these key factors into one system to achieve the theoretically maximum signal amplification is still challenging. Herein, we design a triple SERS signal amplification platform by the coordination of spiky Au NPs with rich-tip nanostructures, controllable silver nanoshell, as well as tailorable surface roughness into one nano-system. As a result, the theoretical electromagnetic field of the interfacial self-assembled 2D substrate can be improved by nearly 5 orders of magnitude, and the ideal tracing capability for the model SERS molecule can be achieved at levels of 5 × 10-11 M. Finally, diverse analytes in pesticide residues, environmental pollutants as well as medically diagnose down to 10-11 M and can be fingerprinted by the proposed SERS nano-platform. Our integrated triple amplification platform not only provides an effective SERS sensing strategy, but also makes it possible to simultaneously achieve high sensitivity, stability as well as universality into one plasmonic-based SERS sensing system.


Asunto(s)
Nanopartículas del Metal , Nanoestructuras , Oro/química , Nanopartículas del Metal/química , Nanoestructuras/química , Plata/química , Espectrometría Raman/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA