Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Appl Clin Med Phys ; 20(9): 122-132, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31385436

RESUMEN

Transmission detectors meant to measure every beam delivered on a linear accelerator are now becoming available for monitoring the quality of the dose distribution delivered to the patient daily. The purpose of this work is to present results from a systematic evaluation of the error detection capabilities of one such detector, the Delta4 Discover. Existing patient treatment plans were modified through in-house-developed software to mimic various delivery errors that have been observed in the past. Errors included shifts in multileaf collimator leaf positions, changing the beam energy from what was planned, and a simulation of what would happen if the secondary collimator jaws did not track with the leaves as they moved. The study was done for simple 3D plans, static gantry intensity modulated radiation therapy plans as well as dynamic arc and volumetric modulated arc therapy (VMAT) plans. Baseline plans were delivered with both the Discover device and the Delta4 Phantom+ to establish baseline gamma pass rates. Modified plans were then delivered using the Discover only and the predicted change in gamma pass rate, as well as the detected leaf positions were evaluated. Leaf deviations as small as 0.5 mm for a static three-dimensional field were detected, with this detection limit growing to 1 mm with more complex delivery modalities such as VMAT. The gamma pass rates dropped noticeably once the intentional leaf error introduced was greater than the distance-to-agreement criterion. The unit also demonstrated the desired drop in gamma pass rates of at least 20% when jaw tracking was intentionally disabled and when an incorrect energy was used for the delivery. With its ability to find errors intentionally introduced into delivered plans, the Discover shows promise of being a valuable, independent error detection tool that should serve to detect delivery errors that can occur during radiotherapy treatment.


Asunto(s)
Órganos en Riesgo/efectos de la radiación , Aceleradores de Partículas/instrumentación , Fantasmas de Imagen , Garantía de la Calidad de Atención de Salud/normas , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/instrumentación , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Neoplasias/radioterapia , Dosificación Radioterapéutica , Programas Informáticos , Tomografía Computarizada por Rayos X/métodos
2.
Calcif Tissue Int ; 103(5): 554-566, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30022228

RESUMEN

Bone is a biological composite material having collagen and mineral as its main constituents. In order to better understand the arrangement of the mineral phase in bone, porcine cortical bone was deproteinized using different chemical treatments. This study aims to determine the best method to remove the protein constituent while preserving the mineral component. Chemicals used were H2O2, NaOCl, NaOH, and KOH, and the efficacy of deproteinization treatments was determined by thermogravimetric analysis and Raman spectroscopy. The structure of the residual mineral parts was examined using scanning electron microscopy. X-ray diffraction was used to confirm that the mineral component was not altered by the chemical treatments. NaOCl was found to be the most effective method for deproteinization and the mineral phase was self-standing, supporting the hypothesis that bone is an interpenetrating composite. Thermogravimetric analyses and Raman spectroscopy results showed the preservation of mineral crystallinity and presence of residual organic material after all chemical treatments. A defatting step, which has not previously been used in conjunction with deproteinization to isolate the mineral phase, was also used. Finally, Raman spectroscopy demonstrated that the inclusion of a defatting procedure resulted in the removal of some but not all residual protein in the bone.


Asunto(s)
Hueso Cortical/ultraestructura , Técnicas de Preparación Histocitológica/métodos , Minerales/análisis , Animales , Microscopía Electrónica de Rastreo , Espectrometría Raman , Porcinos , Difracción de Rayos X
3.
Adv Radiat Oncol ; 7(1): 100812, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34805621

RESUMEN

PURPOSE: A modern radiation oncology electronic medical record (RO-EMR) system represents a sophisticated human-computer interface with the potential to reduce human driven errors and improve patient safety. As the RO-EMR becomes an integral part of clinical processes, it may be advantageous to analyze learning opportunities (LO) based on their relationship with the RO-EMR. This work reviews one institution's documented LO to: (1) study their relationship with the RO-EMR workflow, (2) identify best opportunities to improve RO-EMR workflow design, and (3) identify current RO-EMR workflow challenges. METHODS AND MATERIALS: Internal LO reports for an 11-year contiguous period were categorized by their relationship to the RO-EMR. We also identify the specific components of the RO-EMR used or involved in each LO. Additionally, contributing factor categories from the ASTRO/AAPM sponsored Radiation Oncology Incident Learning System's (RO-ILS) nomenclature was used to characterize LO directly linked to the RO-EMR. RESULTS: A total of 163 LO from the 11-year period were reviewed and analyzed. Most (77.2%) LO involved the RO-EMR in some way. The majority of the LO were the results of human/manual operations. The most common RO-EMR components involved in the studied LO were documentation related to patient setup, treatment session schedule functionality, RO-EMR used as a communication/note-delivery tool, and issues with treatment accessories. Most of the LO had staff lack of attention and policy not followed as 2 of the highest occurring contributing factors. CONCLUSIONS: We found that the majority of LO were related to RO-EMR workflow processes. The high-risk areas were related to manual data entry or manual treatment execution. An evaluation of LO as a function of their relationship with the RO-EMR allowed for opportunities for improvement. In addition to regular radiation oncology quality improvement review and policy update, automated functions in RO-EMR remain highly desirable.

4.
Sci Rep ; 11(1): 7012, 2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33782429

RESUMEN

Bone is a biological composite material consisting of two main components: collagen and mineral. Collagen is the most abundant protein in vertebrates, which makes it of high clinical and scientific interest. In this paper, we compare the composition and structure of cortical bone demineralized using several protocols: ethylene-diamine-tetraacetic acid (EDTA), formic acid (CH2O2), hydrochloric acid (HCl), and HCl/EDTA mixture. The efficiencies of these four agents were investigated by assessing the remaining mineral quantities and collagen integrity with various experimental techniques. Raman spectroscopy results show that the bone demineralized by the CH2O2 agent has highest collagen quality parameter. The HCl/EDTA mixture removes the most mineral, but it affects the collagen secondary structure as amide II bands are shifted as observed by Fourier transform infrared spectroscopy. Thermogravimetric analysis reveals that HCl and EDTA are most effective in removing the mineral with bulk measurements. In summary, we conclude that HCl best demineralizes bone, leaving the well-preserved collagen structure in the shortest time. These findings guide on the best demineralization protocol to obtain high-quality collagen from bone for clinical and scientific applications.


Asunto(s)
Técnica de Desmineralización de Huesos/clasificación , Técnica de Desmineralización de Huesos/métodos , Colágeno/química , Hueso Cortical/metabolismo , Animales , Porcinos
5.
Med Phys ; 47(12): 6113-6121, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33020930

RESUMEN

INTRODUCTION: Ultrasound (US) guidance of the prostate has long been conducted using a transabdominal (TA) approach. More recently, a transperineal (TP) approach has been made available for image guidance. Our aim was to determine if both methods produced similar alignments within the same patients. MATERIALS AND METHODS: We utilized two clinical US image guidance (IG) systems (Elekta Clarity and Best BAT). The B-mode Acquisition and Targeting USIG system is a bi-planar, so-called 2.5D USIG system, that is acquired TA. Clarity is a 3D US system that generates a volumetric 3D US data set and US-derived IG contours that are coregistered to the planning CT images. The probe is oriented in the sagittal plane against the perineum (TP). After positioning the patient for treatment using the TP USIG, we maintained the position defined by Clarity tracking and then acquired a TA-based USIG. The two US-based methods of localizing the prostate (TA vs TP) were compared via Bland-Altman (BA) statistical analysis to determine if there was alignment agreement between methods. RESULTS: The BA test for all 101 patients, 2093 fractions resulted in 95% confidence intervals (upper and lower limits of the BA test) of 0.6 mm in LR, 0.9 mm in AP and 1.0 mm in SI. The bias between the two systems was calculated as 0.03, 0.02, and 0.03 mm in LR, AP, and SI. CONCLUSIONS: Both systems resulted in statistically equivalent targeting positions for the prostate. Because of the unique intrafraction, real-time motion tracking capability of the TP system, this solution represents a unique extension to the previously reported clinical benefits of a TA approach by providing assurance of the prostate remaining in the treatment field during beam-on.


Asunto(s)
Neoplasias de la Próstata , Humanos , Masculino , Movimiento (Física) , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/radioterapia , Planificación de la Radioterapia Asistida por Computador , Ultrasonografía
6.
Adv Mater ; 31(43): e1901561, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31268207

RESUMEN

Biological materials found in Nature such as nacre and bone are well recognized as light-weight, strong, and tough structural materials. The remarkable toughness and damage tolerance of such biological materials are conferred through hierarchical assembly of their multiscale (i.e., atomic- to macroscale) architectures and components. Herein, the toughening mechanisms of different organisms at multilength scales are identified and summarized: macromolecular deformation, chemical bond breakage, and biomineral crystal imperfections at the atomic scale; biopolymer fibril reconfiguration/deformation and biomineral nanoparticle/nanoplatelet/nanorod translation, and crack reorientation at the nanoscale; crack deflection and twisting by characteristic features such as tubules and lamellae at the microscale; and structure and morphology optimization at the macroscale. In addition, the actual loading conditions of the natural organisms are different, leading to energy dissipation occurring at different time scales. These toughening mechanisms are further illustrated by comparing the experimental results with computational modeling. Modeling methods at different length and time scales are reviewed. Examples of biomimetic designs that realize the multiscale toughening mechanisms in engineering materials are introduced. Indeed, there is still plenty of room mimicking the strong and tough biological designs at the multilength and time scale in Nature.


Asunto(s)
Materiales Biomiméticos , Fenómenos Mecánicos , Animales , Materiales Biomiméticos/química , Biopolímeros/química , Humanos
7.
J Mech Behav Biomed Mater ; 73: 38-49, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28274703

RESUMEN

This paper explores the structure, composition, and mechanical properties of porcupine fish spines for the first time. The spine was found to be composed of nanocrystalline hydroxyapatite, protein (collagen), and water using X-ray diffraction, energy-dispersive X-ray spectroscopy, and thermogravimetric analysis. Microstructures have mineralized fibrillar sheets in the longitudinal direction and in a radial orientation in the transverse direction that were observed using light and electron microscopy. Based on the images, the hierarchical structure of the spine shows both concentric and radial reinforcement. Mechanical properties were obtained using cantilever beam and nanoindentation tests. A tapered cantilever beam model was developed and compared to that of a uniform cantilever beam. The tapered beam model showed that while the stresses experienced were similar to those of the uniform beam, the location of the maximum stress was near the distal region of the beam rather than at the base, which allows the porcupine fish to conserve energy and resources if the spine is fractured.


Asunto(s)
Escamas de Animales/fisiología , Peces , Animales , Fenómenos Biomecánicos , Espectrometría por Rayos X , Estrés Mecánico , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA