Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nature ; 548(7667): 352-355, 2017 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-28682307

RESUMEN

Misfolded endoplasmic reticulum proteins are retro-translocated through the membrane into the cytosol, where they are poly-ubiquitinated, extracted from the membrane, and degraded by the proteasome-a pathway termed endoplasmic reticulum-associated protein degradation (ERAD). Proteins with misfolded domains in the endoplasmic reticulum lumen or membrane are discarded through the ERAD-L and ERAD-M pathways, respectively. In Saccharomyces cerevisiae, both pathways require the ubiquitin ligase Hrd1, a multi-spanning membrane protein with a cytosolic RING finger domain. Hrd1 is the crucial membrane component for retro-translocation, but it is unclear whether it forms a protein-conducting channel. Here we present a cryo-electron microscopy structure of S. cerevisiae Hrd1 in complex with its endoplasmic reticulum luminal binding partner, Hrd3. Hrd1 forms a dimer within the membrane with one or two Hrd3 molecules associated at its luminal side. Each Hrd1 molecule has eight transmembrane segments, five of which form an aqueous cavity extending from the cytosol almost to the endoplasmic reticulum lumen, while a segment of the neighbouring Hrd1 molecule forms a lateral seal. The aqueous cavity and lateral gate are reminiscent of features of protein-conducting conduits that facilitate polypeptide movement in the opposite direction-from the cytosol into or across membranes. Our results suggest that Hrd1 forms a retro-translocation channel for the movement of misfolded polypeptides through the endoplasmic reticulum membrane.


Asunto(s)
Microscopía por Crioelectrón , Degradación Asociada con el Retículo Endoplásmico , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/ultraestructura , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura , Saccharomyces cerevisiae/química , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/ultraestructura , Interacciones Hidrofóbicas e Hidrofílicas , Glicoproteínas de Membrana/química , Modelos Moleculares , Conformación Proteica , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Ubiquitina-Proteína Ligasas/química
2.
ScientificWorldJournal ; 2014: 716020, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24757432

RESUMEN

Through reorganizing the execution order and optimizing the data structure, we proposed an efficient parallel framework for H.264/AVC encoder based on massively parallel architecture. We implemented the proposed framework by CUDA on NVIDIA's GPU. Not only the compute intensive components of the H.264 encoder are parallelized but also the control intensive components are realized effectively, such as CAVLC and deblocking filter. In addition, we proposed serial optimization methods, including the multiresolution multiwindow for motion estimation, multilevel parallel strategy to enhance the parallelism of intracoding as much as possible, component-based parallel CAVLC, and direction-priority deblocking filter. More than 96% of workload of H.264 encoder is offloaded to GPU. Experimental results show that the parallel implementation outperforms the serial program by 20 times of speedup ratio and satisfies the requirement of the real-time HD encoding of 30 fps. The loss of PSNR is from 0.14 dB to 0.77 dB, when keeping the same bitrate. Through the analysis to the kernels, we found that speedup ratios of the compute intensive algorithms are proportional with the computation power of the GPU. However, the performance of the control intensive parts (CAVLC) is much related to the memory bandwidth, which gives an insight for new architecture design.


Asunto(s)
Computadores , Algoritmos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA