Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Acta Biochim Biophys Sin (Shanghai) ; 52(11): 1236-1246, 2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33079978

RESUMEN

Arterial marker genes EphrinB2 and HEY2 are essential for cardiovascular development and postnatal neovascularization. Our previous study confirmed that E2F1 could activate the transcription of EphrinB2 and HEY2 in human mesenchymal stem cells; however, the detailed mechanism has not been resolved yet. In this study, we focused on the interaction between E2F1 and DNMT3A, a de novo DNA methyltransferase, on regulating the expression of EphrinB2 and HEY2, and explored the potential mechanisms. Gain- and loss-of-function experiments implicated the positive effect of E2F1 on the expression of EphrinB2 and HEY2 and tube formation in human umbilical artery endothelial cells. Accumulation of DNMT3A decreased the levels of EphrinB2 and HEY2, and impaired tube formation induced by E2F1, while inhibiting DNMT3A by RNA interference augmented their expression and angiogenesis in E2F1-trasfected cells. We then asked whether the low expressions of EphrinB2 and HEY2 induced by DNMT3A are related to the methylation status of their promoters. Surprisingly, the methylation status of the CpG islands in the promoter region was not significantly affected by overexpression of exogenous DNMT3A. Furthermore, the interaction between E2F1 and DNMT3A was confirmed by co-immunoprecipitation. DNMT3A could inhibit the transcription of EphrinB2 and HEY2 promoters by affecting the binding of E2F1 to its recognition sequences as revealed by luciferase reporter assay and chromatin immunoprecipitation. These results identified a novel mechanism underlying the cooperation of DNMT3A with E2F1 on regulating target gene expression, and revealed their roles in the angiogenic process.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , Factor de Transcripción E2F1/antagonistas & inhibidores , Neovascularización Fisiológica , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Chlorocebus aethiops , Inmunoprecipitación de Cromatina , Islas de CpG , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Metiltransferasa 3A , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/fisiología , Células Endoteliales/metabolismo , Efrina-B2/metabolismo , Regulación de la Expresión Génica/genética , Técnicas de Silenciamiento del Gen , Humanos , Cultivo Primario de Células , Regiones Promotoras Genéticas , Proteínas Represoras/metabolismo , Arterias Umbilicales/metabolismo
2.
Sci Adv ; 10(6): eadi9284, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38324683

RESUMEN

Gasdermin D (GSDMD) serves as a vital mediator of inflammasome-driven pyroptosis. In our study, we have identified NU6300 as a specific GSDMD inhibitor that covalently interacts with cysteine-191 of GSDMD, effectively blocking its cleavage while not affecting earlier steps such as ASC oligomerization and caspase-1 processing in AIM2- and NLRC4-mediated inflammation. On the contrary, NU6300 robustly inhibits these earlier steps in NLRP3 inflammasome, confirming a unique feedback inhibition effect in the NLRP3-GSDMD pathway upon GSDMD targeting. Our study reveals a previously undefined mechanism of GSDMD inhibitors: NU6300 impairs the palmitoylation of both full-length and N-terminal GSDMD, impeding the membrane localization and oligomerization of N-terminal GSDMD. In vivo studies further demonstrate the efficacy of NU6300 in ameliorating dextran sodium sulfate-induced colitis and improving survival in lipopolysaccharide-induced sepsis. Overall, these findings highlight the potential of NU6300 as a promising lead compound for the treatment of inflammatory diseases.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Proteína con Dominio Pirina 3 de la Familia NLR , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Inflamasomas/metabolismo , Cisteína/metabolismo , Gasderminas , Lipoilación
3.
J Med Chem ; 67(9): 7516-7538, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38686671

RESUMEN

The NLRP3 inflammasome has been recognized as a promising therapeutic target in drug discovery for inflammatory diseases. Our initial research identified a natural sesquiterpene isoalantolactone (IAL) as the active scaffold targeting NLRP3 inflammasome. To improve its activity and metabolic stability, a total of 64 IAL derivatives were designed and synthesized. Among them, compound 49 emerged as the optimal lead, displaying the most potent inhibitory efficacy on nigericin-induced IL-1ß release in THP-1 cells, with an IC50 value of 0.29 µM, approximately 27-fold more potent than that of IAL (IC50: 7.86 µM), and exhibiting higher metabolic stability. Importantly, 49 remarkably improved DSS-induced ulcerative colitis in vivo. Mechanistically, we demonstrated that 49 covalently bound to cysteine 279 in the NACHT domain of NLRP3, thereby inhibiting the assembly and activation of NLRP3 inflammasome. These results provided compelling evidence to further advance the development of more potent NLRP3 inhibitors based on this scaffold.


Asunto(s)
Diseño de Fármacos , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Sesquiterpenos , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Humanos , Inflamasomas/metabolismo , Inflamasomas/antagonistas & inhibidores , Animales , Sesquiterpenos/farmacología , Sesquiterpenos/síntesis química , Sesquiterpenos/química , Ratones , Relación Estructura-Actividad , Interleucina-1beta/metabolismo , Células THP-1 , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/metabolismo , Ratones Endogámicos C57BL
4.
Eur J Med Chem ; 256: 115469, 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37178481

RESUMEN

Salt-inducible kinases (SIKs) play a crucial role in inflammation process, acting as molecular switches that regulate the transformation of M1/M2 macrophages. HG-9-91-01 is a SIKs inhibitor with potent inhibitory activity against SIKs in the nanomolar range. However, its poor drug-like properties, including a rapid elimination rate, low in vivo exposure and high plasma protein binding rate, have hindered further research and clinical application. To improve the drug-like properties of HG-9-91-01, a series of pyrimidine-5-carboxamide derivatives were designed and synthesized through a molecular hybridization strategy. The most promising compound 8h was obtained with favorable activity and selectivity on SIK1/2, excellent metabolic stability in human liver microsome, enhanced in vivo exposure and suitable plasma protein binding rate. Mechanism research showed that compound 8h significantly up-regulated the expression of anti-inflammatory cytokine IL-10 and reduced the expression of pro-inflammatory cytokine IL-12 in bone marrow-derived macrophages. Furthermore, it significantly elevated expression of cAMP response element-binding protein (CREB) target genes IL-10, c-FOS and Nurr77. Compound 8h also induced the translocation of CREB-regulated transcriptional coactivator 3 (CRTC3) and elevated the expression of LIGHT, SPHK1 and Arginase 1. Additionally, compound 8h demonstrated excellent anti-inflammatory effects in a DSS-induced colitis model. Generally, this research indicated that compound 8h has the potential to be developed as an anti-inflammatory drug candidate.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Interleucina-10 , Humanos , Citocinas/metabolismo , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Proteínas Serina-Treonina Quinasas , Pirimidinas/química
5.
Eur J Med Chem ; 251: 115234, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-36893624

RESUMEN

P2X7R, which is a member of the purinergic P2 receptor family, is widely expressed in many immune cells, such as macrophages, lymphocytes, monocytes, and neutrophils. P2X7R is upregulated in response to proinflammatory stimulation, which is closely related to a variety of inflammatory diseases. The inhibition of P2X7 receptors has resulted in the elimination or reduction of symptoms in animal models of arthritis, depression, neuropathic pain, multiple sclerosis, and Alzheimer's disease. Therefore, the development of P2X7R antagonists is of great significance for the treatment of various inflammatory diseases. This review classifies the reported P2X7R antagonists according to their different cores, focuses on the structure-activity relationship (SAR) of the compounds, and analyzes some common substituents and strategies in the design of lead compounds, with the hope of providing valuable information for the development of new and efficient P2X7R antagonists.


Asunto(s)
Neuralgia , Animales , Relación Estructura-Actividad , Macrófagos , Monocitos , Receptores Purinérgicos P2X7 , Antagonistas del Receptor Purinérgico P2X/farmacología
6.
J Med Chem ; 66(21): 14447-14473, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37879043

RESUMEN

NLRP3 inflammasome is a multiprotein complex involved in host immune response─which exerts various biological effects by mediating the maturation and secretion of IL-1ß and IL-18─and pyroptosis. However, its aberrant activation could cause amplification of inflammatory effects, thereby triggering a range of ailments, including Alzheimer's disease, Parkinson's disease, rheumatoid arthritis, gout, type 2 diabetes mellitus, and cancer. For the past few years, as an attractive anti-inflammatory target, NLRP3-targeting small-molecule inhibitors have been widely reported by both the academic and the industrial communities. In order to deeply understand the advancement of NLRP3 inflammasome inhibitors, we provide comprehensive insights and commentary on drugs currently under clinical investigation, as well as other NLRP3 inflammasome inhibitors from a chemical structure point of view, with an aim to provide new insights for the further development of clinical drugs for NLRP3 inflammasome-mediated diseases.


Asunto(s)
Artritis Reumatoide , Diabetes Mellitus Tipo 2 , Humanos , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Interleucina-1beta , Piroptosis
7.
J Med Chem ; 66(19): 13428-13451, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37756547

RESUMEN

NLRP3 is an intracellular sensor protein that causes inflammasome formation and pyroptosis in response to a wide range of stimuli. Aberrant activation of NLRP3 inflammasome has been implicated in various chronic inflammatory diseases, making it a promising target for therapeutic intervention. In this work, a series of novel triazinone inhibitors of NLRP3 inflammasome were designed and synthesized. Compound L38 was identified for its excellent activity and acceptable metabolic stability among 41 compounds. Additionally, mechanism studies indicated that L38 inhibited NLRP3 inflammasome activation and pyroptosis by suppressing gasdermin D cleavage, ASC oligomerization, and NLRP3 inflammasome assembly while leaving mitochondrial ROS production, lysosome damage, and chloride/potassium efflux unaffected. Further investigation revealed that L38 could bind to the NACHT domain to exert inflammatory properties. Importantly, L38 exhibited positive therapeutic effects in DSS-induced ulcerative colitis mouse model. Taken together, this study presents a promising inhibitor of NLRP3 inflammasome deserving further investigation.


Asunto(s)
Colitis Ulcerosa , Inflamasomas , Ratones , Animales , Inflamasomas/metabolismo , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis , Ratones Endogámicos C57BL
8.
J Med Chem ; 66(16): 11365-11389, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37582195

RESUMEN

Sepsis-associated acute kidney injury (AKI) is a serious clinical problem, without effective drugs. Abnormal activation of the purinergic P2X7 receptor (P2X7R) in septic kidneys makes its antagonist a promising therapeutic approach. Herein, a series of novel P2X7R antagonists were designed, synthesized, and structurally optimized. Based on in vitro potency in human/mouse P2X7R using HEK293 cells, hepatic microsomal stability, and pharmacokinetic and preliminary in vivo assessments, compound 14a was identified by respective human and mouse P2X7R IC50 values of 64.7 and 10.1 nM, together with favorable pharmacokinetic properties. Importantly, 14a dose-dependently alleviated kidney dysfunction and pathological injury in both lipopolysaccharide (LPS)- and cecal ligation/perforation (CLP)-induced septic AKI mice with a good safety profile. Mechanistically, 14a could suppress NLRP3 inflammasome activation to inhibit the expression of cleaved caspase-1, gasdermin D, IL-1ß, and IL-18 in the injured kidneys of septic mice. Collectively, these results highlighted that P2X7R antagonist 14a exerted a therapeutic potential against septic AKI.


Asunto(s)
Lesión Renal Aguda , Sepsis , Animales , Humanos , Ratones , Lesión Renal Aguda/tratamiento farmacológico , Caspasa 1/metabolismo , Células HEK293 , Inflamasomas/metabolismo , Riñón/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Antagonistas del Receptor Purinérgico P2X/farmacología , Antagonistas del Receptor Purinérgico P2X/uso terapéutico , Receptores Purinérgicos P2X7 , Sepsis/tratamiento farmacológico
9.
Phytomedicine ; 109: 154617, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36610140

RESUMEN

BACKGROUND: Searching the targets of natural products is very important for drug discovery and elucidating the mechanism of drug action and disease. Honokiol (HK), as the major active component of Magnolia officinalis Rehder & E.H.Wilson, has been widely used in medicine and cosmetics. Among its bioactivities, its anti-inflammatory activity is particularly impressive. However, the target protein of HK in anti-inflammatory action and its regulatory mechanism are unclear. PURPOSE: Here, we identified the target protein and molecular mechanism of the anti- inflammatory action of HK. METHODS: First, an LPS-induced septic shock model and DSS-induced ulcerative colitis model were used to assess the anti-inflammatory efficacy of HK. Second, the drug affinity responsive target stability, proteomics analysis, thermal shift assays and cellular thermal shift assays were used to identify and validate the target of HK. Finally, western blot, ELISA, LDH immunofluorescence staining, shRNA and LC/MS for L-leucine analysis were performed to determine the mechanism of the anti-inflammatory action of HK. RESULTS: This study revealed that HK significantly alleviated LPS-induced septic shock and DSS-induced ulcerative colitis in vivo, suggesting that HK has significant anti-inflammatory activity. HK treatment dramatically reduced IL-1ß release and caspase-1 activation at different time points, showing that HK could inhibit both NLRP3 inflammasome priming and activation processes in cells. HK also suppressed adaptor apoptosis speck-like protein oligomerization. Mechanistically, SLC3A2 was identified as a direct target of HK in THP-1 cells. HK downregulated SLC3A2 expression by promoting its degradation via proteasome-mediated proteolysis. Further study demonstrated that HK triggered SLC3A2 to suppress NLRP3 inflammasome activation by significantly reducing the content of L-leucine transported into cells and lysosomes to block the mTORC1 pathway. CONCLUSIONS: Our work identified HK as a promising anti-inflammatory drug candidate through the SLC3A2/L-leucine/mTORC1/NLRP3 pathways.


Asunto(s)
Colitis Ulcerosa , Choque Séptico , Humanos , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Lipopolisacáridos , Leucina , Antiinflamatorios/farmacología
10.
ACS Med Chem Lett ; 13(4): 560-569, 2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35450356

RESUMEN

The NLRP3 inflammasome has now emerged as one of the most appealing drug targets for many inflammation-related diseases. Velutone F, a natural NLPR3 inhibitor, identified in our previous study has been limited in application by its low in planta abundance, weak activity, and complicated synthetic routes. To address these needs, structural optimization of velutone F led to a series of novel NLRP3 inhibitors. Among them, compound 14c exerted remarkable inhibitory activity with an IC50 value in the nanomolar range (251.1 nM) and was approximately 5-fold more potent than velutone F. Moreover, the synthesis method of 14c was simple, easy to handle, and scalable. Compound 14c could suppress NLRP3 inflammasome activation by attenuating ASC speck formation. Most importantly, compound 14c reduced peritoneal neutrophil influx in mice and IL-1ß in the spleen in the MSU-induced peritonitis in LPS-primed mouse model. Taken together, compound 14c is a prospective lead compound in the discovery of NLRP3 inflammasome inhibitors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA